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VISION OF THE INSTITUTION 

To mould true citizens who are millennium leaders and catalysts of change through excellence in 

education. 

 MISSION OF THE INSTITUTION  

NCERC is committed to transform itself into a center of excellence in Learning and Research in 

Engineering and Frontier Technology and to impart quality education to mould technically competent 

citizens with moral integrity, social commitment and ethical values. 

  

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe 

discipline, culture and spiritually, and to mould them in to technological giants, dedicated research 

scientists and intellectual leaders of the country who can spread the beams of light and happiness among 

the poor and the underprivileged. 
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ABOUT DEPARTMENT 

 Established in: 2002 

 Course offered  :  B.Tech in Computer Science and Engineering 

M.Tech in Computer Science and Engineering 

M.Tech in Cyber Security 

 Approved by AICTE New Delhi and Accredited by NAAC 

 Affiliated to the University of Dr. A P J Abdul Kalam Technological University. 

 

DEPARTMENT VISION 

Producing  Highly  Competent, Innovative and Ethical Computer Science and Engineering Professionals 

to facilitate continuous technological advancement. 

 

DEPARTMENT MISSION 

1. To Impart Quality Education by creative Teaching Learning Process  

2. To Promote cutting-edge Research and Development Process to solve real world problems with 

emerging technologies.  

3. To Inculcate Entrepreneurship Skills among Students.  

4. To cultivate Moral and Ethical Values in their Profession.  

PROGRAMME EDUCATIONAL OBJECTIVES 

PEO1: Graduates will be able to Work and Contribute in the domains of Computer Science and Engineering 

through lifelong learning. 
PEO2: Graduates will be able to Analyse, design and development of novel Software Packages, 

Web Services, System Tools and Components as per needs and specifications. 

PEO3: Graduates will be able to demonstrate their ability to adapt to a rapidly changing environment by 

learning and applying new technologies. 

PEO4: Graduates will be able to adopt ethical attitudes, exhibit effective communication skills, 
Teamworkand leadership qualities. 

 

 

 

Free Hand
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PROGRAM OUTCOMES (POS) 

Engineering Graduates will be able to: 

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering 

fundamentals, and an engineering specialization to the solution of complex engineering 

problems. 

2. Problem analysis: Identify, formulate, review research literature, and analyze complex 

engineering problems reaching substantiated conclusions using first principles of 

mathematics, natural sciences, and engineering sciences. 

3. Design/development of solutions: Design solutions for complex engineering problems and 

design system components or processes that meet the specified needs with appropriate 

consideration for the public health and safety, and the cultural, societal, and environmental 

considerations. 

4. Conduct investigations of complex problems: Use research-based knowledge and research 

methods including design of experiments, analysis and interpretation of data, and synthesis of 

the information to provide valid conclusions. 

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern 

engineering and IT tools including prediction and modeling to complex engineering activities 

with an understanding of the limitations. 

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess 

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant 

to the professional engineering practice. 

7. Environment and sustainability: Understand the impact of the professional engineering 

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need 

for sustainable development. 

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and 

norms of the engineering practice. 

9. Individual and team work: Function effectively as an individual, and as a member or leader 

in diverse teams, and in multidisciplinary settings. 

10. Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as, being able to comprehend and 

write effective reports and design documentation, make effective presentations, and give and 

receive clear instructions. 

11. Project management and finance: Demonstrate knowledge and understanding of the 

engineering and management principles and apply these to one’s own work, as a member and 

leader in a team, to manage projects and in multidisciplinary environments. 

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in 

independent and life-long learning in the broadest context of technological change. 

PROGRAM SPECIFIC OUTCOMES (PSO) 

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for Real-

time Problems and to investigate for its future scope. 
 

PSO2: Ability to learn and apply various methodologies for facilitating development of high quality 

System Software Tools and Efficient Web Design Models with a focus on performance 
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optimization. 
 

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating hardware/software 

products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create 

innovative career path and for the socially relevant issues. 

 

COURSE OUTCOMES 

 

CO1 Organize and make decision for optimization problem 

CO2 Understand and apply various functions of optimization Functions 

CO3 
Analyze and apply unconstrained functions and  Linear 

Programming 

CO4 Learn the various tests for optimality and apply 

CO5 
Analyze the Network by linear programming and 

shortest route 

CO6 Apply GA for optimized solution in various problems 

 

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES 

 

 

 

 

 

 

 PO 

1 

PO 

2 

PO 

3 

PO 

4 

PO 

5 

PO 

6 

PO 

7 

PO 

8 

PO 

9 

PO 

10 

PO 

11 

PO 

12 

CO1 
3 3 3 3 3 - - - - - - - 

CO2 
3 3 3 3 3 - - - - - - - 

CO3 
3 3 3 3 3 - - - - - - - 

CO4 
3 3 3 3 3 - - - - - - - 

CO5 
3 3 3 3 3 - - - - - - - 

CO6 
3 3 3 3 3 - - - - - - - 
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MAPPING OF COURSE OUTCOMES WITH PROGRAM SPECIFIC OUTCOMES 

 

 

 

 

 

 

 

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1 

 

SYLLABUS 

 

 PSO1 PSO2 

 

PSO3 

CO1 
3 3 - 

CO2 
3 3 - 

CO3 
3 3 - 

CO4 
3 3 - 

CO5 
3 3 - 

CO6 
3 3 - 
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QUESTION BANK 

 

 

MODULE I 

 

Q:N

O: 

 

QUESTIONS 

 

CO 

 

KL 

 

PAGE 

NO: 

1 Write the steps involved in Monte Carlo Simulation. CO1 K3 24 

2 Explain decision making under certainty and under 

uncertainty. 

CO1 K5 14 

3 Write about the elements of a queuing model. CO1 K3 22 

4 Give any three applications of optimization problem.  CO1 K2 29 

5 Write classification based on existence of constraints and 

based on the physical structure of the problem. 

CO1 K3 25 

6 Write about the hierarchy of optimization. CO1 K3 28 

7 Explain different form of Queue disciplines. CO1 K5 23 

8 Write about the classification based on the nature of the 

equations involved and based on the permissible values 

of the decision variables. 

CO1 K3 25 

9 Write down any seven typical applications of 

optimization. 

CO1 K3 29 

 

MODULE II 

1 Determine whether the following functions are convex or concave. 

 

CO2 K5 34 

2 Explain the statement of an optimization problem. 
 

CO2 K5 31 

3 Draw the constraint surfaces in a hypothetical two-

dimensional design space. 

CO2 K1 32 
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4 Determine whether the following functions are convex or 

concave. 

1.  2.  
 

CO2 K5 34 

5 Explain in detail about Convex and Concave functions CO2 K5 34 

6 Write about investment costs and operating costs in 

objective function. 
 

CO2 K3 37 

7 Write about the Hessian matrix. 
 

CO2 K3 35 

8 Explain about the various objective functions. 
 

CO2 K5 33 

9 Explain in detail about Optimizing profitability 

constraints. 
 

CO2 K5 39 

 

MODULE III 

1 Write about improved approximation in the Newton-

Raphson Method. 

CO3 K3 47 

2 Write about the  necessary and sufficient conditions for 

optimum of unconstrained functions. 

CO3 K3 46 

3 Use Newton-Raphson Method to solve the following 

problem. 

 

CO3 K5 47 

4 Write down the One-Dimensional Minimization 

Methods. 

CO3 K3 50 

5 Determine the extreme points of the following: 

 

CO3 K5 47 

6 Write down the steps for the numerical method of  

optimization. 

CO3 K3 49 

7 Determine the extreme points of the following: CO3 K5 47 
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8 Write down the algorithm for search with fixed step size. CO3 K3 50 

 

MODULE IV 

1 Write down the transportation algorithm. CO4 K3 77 

2 Describe assignment problem. CO4 K2 96 

3 SunRay Transport Company ships truckloads of grain 

from three silos to four mills. The supply(in truckloads) 

and the demand (also in truckloads) together with the unit 

transportation costs per truckload on the different routes 

are summarized in the transportation modal in the 

following Table. The unit transportation costs, cij, (shown 

in the northeast corner of each box) are in hundreds of 

dollars. The model seeks the minimum-cost shipping 

schedule xij between silo i and mill j (i=1,2,3; j=1,2,3,4). 

Determine the starting solution using Northwest-corner , 

Least-cost method 

 

CO4 K5 77 
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4 Describe about the determination of closed loop in 

iterative computations of the transportation algorithm. 

CO4 K2 88 

5 Give the transportation model and optimal solution for 

the following MG problem. 

Minimize z=80x11+215x12+100x21+108x22+102x31+68x32 

Subject to 

x11+ x12=1000(Los Angeles) 

x21+ x22=1500(Detroit) 

x31+ x32=1200(New Oreleans) 

x11+ x21+ x31=2300(Denver) 

x12+ x22+ x32=1400(Miami) 

CO4 K2 74 

6 List down and differentiate among the starting solution 

determination methods. 

CO4 K1 77 

7 Draw the representation of the transportation model with 

nodes and arcs. 

CO4 K1 74 

8 Write about the mathematical formulation of 

transportation problem. 

CO4 K3 76 

9 Define the transportation modal. CO4 K1 74 

10 Describe the solution for assignment problem using the 

Hungarian method. 

CO4 K2 96 

 

MODULE V 

1 Write down the Dijkstra’s algorithm for shortest route 

problem. 

CO5 K3 106 

2 Write down the Floyd’s algorithm for all pair shortest 

path problem . 

CO5 K3 108 

3 List down the requirement for non-traditional 

optimization techniques. 

CO5 K1 115 

4 Explain in detail about np-hard and np-complete CO5 K5 118 
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problems. 

5 Write down the Tabu search algorithm. CO5 K3 121 

6 Explain in detail about short term and long term memory 

in Tabu search. 

CO5 K5 125 

 

MODULE VI 

1 Explain the basic concepts of genetic algorithms. 
 

CO6 K5 128 

2 Write down the genetic algorithm. CO6 K3 128 

3 Write down the simulated annealing algorithm. CO6 K3 143 

4 Explain acceptance probability and cooling of simulated 

annealing. 

CO6 K5 144 

5 Write down the application of genetic algorithm in TSP. CO6 K3 146 

6 Write down the application of simulated annealing in 

sequencing. 

CO6 K3 147 

 

 

APPENDIX 1 

 

CONTENT BEYOND THE SYLLABUS 

SL.NO: TOPIC PAGE NO: 

1 Why do we need better optimization Algorithms? 154 

2 Stochastic Gradient Descent with Momentum. 156 

3 AdaGrad 157 

4 RMSProp 158 

5 Adam Optimizer 160 

6 What is the best Optimization Algorithm for Deep Learning? 162 
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MODULE NOTES 
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Module I 

The action of making the best or most effective use of a situation or resource. 

Objectives 

1. Understand the need and origin of the optimization methods. 

2. Get a broad picture of the various applications of optimization methods used in engineering.  

Introduction 

1. Optimization : The act of obtaining the best result under the given circumstances. 

2. Design, construction and maintenance of engineering systems involve decision making 

both at the managerial and the technological level. 

3. Goals of such decisions : 

 to minimize the effort required or  

 to maximize the desired benefit 

Optimization : Defined as the process of finding the conditions that give the minimum or 

maximum value of a function, where the function represents the effort required or the desired 

benefit. 

Engineering applications of optimization 

1. Design of structural units in construction, machinery, and in space vehicles.  

2. Maximizing benefit/minimizing product costs in various manufacturing and construction 

processes.  

3. Optimal path finding in road networks/freight handling processes.  

4. Optimal production planning, controlling and scheduling.  

5. Optimal Allocation of resources or services among several activities to maximize the 

benefit  

Problem Definition 

Problem definition and formulation, steps involved: 

1. identification of the decision variables; 

2. formulation of the model objective(s); 

3. the formulation of the model constraints. 

In performing these steps one must consider the following. 
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1. Identify the important elements that the problem consists of. 

2. Determine the number of independent variables, the number of equations required to 

describe the system, and the number of unknown parameters. 

3. Evaluate the structure and complexity of the model 

4. Select the degree of accuracy required of the model 

Decision-making procedure under certainty and under uncertainty 

Decision problems 

1. Decision problems involving a finite number of alternatives arise frequently in practice. 

2. The tools used to solve these problems depend largely on the type of data available. 

 1. deterministic, 

 2. probabilistic, 

 3. uncertain 

DECISION MAKING UNDER CERTAINTY 

1. The analytic hierarchy process (AHP) is a prominent tool for dealing with decisions 

under certainty. 

2. All the functions are well defined. 

3. AHP is designed for situations in which ideas, feelings, and emotions affecting the 

decision process are quantified to provide a numeric scale for prioritizing the alternatives. 

AHP(Analytic Hierarchy Process) 

Example 
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DECISION UNDER UNCERTAINTY 

1. involves alternative actions whose payoffs depend on the (random) states of nature. 

2. the payoff matrix of a decision problem with m alternative actions and n states of nature 

can be represented as 
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in the case of uncertainty, the probability distribution associated with the states Sj, j = 1, 2, ... , n, 

is either unknown or cannot be determined. 

This lack of information has led to the development of the following criteria for analyzing the 

decision problem: 

1. Laplace 

2. Minimax 

3. Savage 

4. Hurwicz 

These criteria differ in how conservative the decision maker is in the face of uncertainty. 
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Operations Research (OR) 
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Basic terminology of operations research 

1. mathematical modeling, 

2. feasible solutions, 

3. Optimization, and 

4. Iterative computations 

Defining the problem correctly is the most important (and most difficult) phase of practicing OR. 

We can look at the situation as a decision-making problem whose solution requires answering 

three questions: 

1. What are the decision alternatives? 

2. Under what restrictions is the decision made? 

3. What is an appropriate objective criterion for evaluating the alternatives? 

4. While mathematical modeling is a cornerstone of OR, intangible (unquantifiable) factors 

(such as human behavior) must be accounted for in the final decision. 

5. The general OR model can be organized in the following general format: 

 

1. Feasible solution 

- if it satisfies all the constraints 

2. Optimal solution 

-in addition to being feasible, it yields the best (maximum or minimum) value of the objective 

function 

1. OR models are designed to "optimize" a specific objective criterion subject to a set of 

constraints. 

2. The quality of the resulting solution depends on the completeness of the model in 

representing the real system. 

SOLVING THE OR MODEL 

I. In OR, we do not have a single general technique to solve all mathematical models that 

can arise in practice. 
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II. OR techniques 

1. linear programming, 

linear objective and constraint functions 

2. Integer programming 

   the variables assume integer values, 

     3. dynamic programming 

the original model can be decomposed into more manageable sub problems 

     4. network programming 

the problem can be modeled as a network 

     5. nonlinear programming 

functions of the model are nonlinear 

Probability and decision- making 

1. How probability can be used to aid the decision–making process. 

Eg:  

suppose we’re considering launching a new product on the market. 

2. We conduct a pre–launch questionnaire and 86 out of the 100 questionnaire respondents say 

that they would buy our product if it was on the market. 

3. probability statement: 

 

which is quite good, and so surely we should launch the product? 

It looks promising! But . . . 

we should also consider the financial outcome of our situation. 

• For example,  

1. if the product is successful, 

we might make a reasonable profit, but 

2. if the product is not successful,  
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we could stand to lose a lot more than we would gain under success (set–up costs, advertising, 

production costs etc), and  

such financial considerations could outweigh the high probability of success alone.  

So, in real–life scenarios, not only do we use probability to aid the decision–making process, but 

we also take into account the financial implications of our decisions. 

This is achieved by weighting the probability of different outcomes by their value Expected 

Monetary Value (EMV ), which is often financial. 

 

1. In general, the expected monetary value of a project (or bet) is given by the formula 

 

2. where the sum is over all possible events that make up the project. 

Queuing or Waiting line theory-Simulation 

WHY STUDY QUEUES? 

Waiting for service is part of our daily life.  

1. We wait to eat in restaurants,  

2. we "queue up“ at the check-out counters in grocery stores, and  

3. we "line up" for service in post offices. 

And the waiting phenomenon is not an experience limited to human beings only:  

1. Jobs wait to be processed on a machine,  

2. planes circle in a stack before given permission to land at an airport, and  

3. cars stop at traffic lights.  
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Waiting cannot be eliminated completely without incurring inordinate expenses, and the goal is 

to reduce its adverse impact to "tolerable" levels. 

The study of queues deals with quantifying the phenomenon of waiting in lines using 

representative measures of performance, such as average queue length, average waiting time in 

queue, and average facility utilization. 

 

ELEMENTS OF A QUEUING MODEL 

1. The principal actors in a queuing situation are the customer and the server.  

2. Customers are generated from a source.  

3. On arrival at a service facility, they can start service immediately or wait in a queue if 

the facility is busy.  

4. When a facility completes a service, it automatically "pulls" a waiting customer, if any, 

from the queue.  

5. If the queue is empty, the facility becomes idle until a new customer arrives. 

6. From the standpoint of analyzing queues, the arrival of customers is represented by the 

inter-arrival time between successive  customers, and the service is described by the 

service time per customer. 

7. Queue size plays a role in the analysis of queues, and it may have a finite size, as in the 

buffer area between two successive machines, or it may be infinite, as in mail order 

facilities. 
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8. Queue discipline, which represents the order in which customers are selected from a 

queue, is an important factor in the analysis of queuing models.  The most common 

discipline is 

1. first come, first served (FCFS).  

2. Other disciplines include last come, first served (LCFS) and  

3. service in random order (SIRO). 

9. Customers may also be selected from the queue based on some order of priority. 

ROLE OF EXPONENTIAL DISTRIBUTION 

1. In most queuing situations, the arrival of customers occurs in a totally random fashion. 

2. Randomness here means that the occurrence of an event (e.g., arrival of a customer or 

completion of a service) is not influenced by the length of time that has elapsed since the 

occurrence of the last event. 

3. Random inter-arrival and service times are described quantitatively in queuing models by 

the exponential distribution, which is defined as 

 

Where 

–  t is the time between successive events 

–         is the arrival rate 

Queuing models 

Single server Poisson Queue model – I 

 (M/M/1):( ∞/FIFO)  

(Single server / Infinite Queue)  

In this model we assume that arrival follows a Poisson distribution and services follows an 

exponential distribution.  

In this model we assume the arrival rate is λ and service rate is µ 

Generally Queuing models may be completely specified in the following symbol 

form:(a/b/c):(d/e)   Kendal’s Notation  

where  

1. a = Probability law for the arrival(or inter arrival)time,  
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2. b = Probability law according to which the customers are being served.  

3. c = Number of service stations d = The maximum number allowed in the system(in service 

and waiting)  

4. e = Queue Discipline 

1. Deal with the study of waiting lines. 

2. They are not optimization techniques; 

3. they determine measures of performance of the waiting lines, such as 

 1. average waiting time in queue 

 2. average waiting time for service, and 

 3. utilization of service facilities. 

1. Simulation estimates the measures of performance by imitating the behavior of the real 

system. 

2. Simulation is flexible and can be used to analyze practically any queuing situation. 

3. The process of developing simulation models is costly in both time and resources. 

4. The execution of simulation models, even on the fastest computer, is usually slow. 

Simulation is the best thing to observing a real system. 

Queuing analysis 

1. The objective of queuing analysis is to offer a reasonably satisfactory service to waiting 

customers. 

2. Queuing theory determines the measures of performance of waiting lines, such as the 

average waiting time in queue and the productivity of the service facility, which can then 

be used to design the service installation. 

MONTE CARLO SIMULATION 

1. Monte Carlo technique is a modeling scheme that estimates stochastic or deterministic 

parameters based on random sampling. 

2. Monte Carlo (MC) methods are a subset of computational algorithms that use the process 

of repeated random sampling to make numerical estimations of unknown 

parameters. 

Steps in MONTE CARLO SIMULATION 

Step 1: Identify the Transfer Equation. ... 

Step 2: Define the Input Parameters. ... 
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Step 3: Create Random Data. ... 

Step 4: Simulate and Analyze Process Output 

Nature and organization of optimization problems 

Optimization problems can be classified based on the type of constraints, nature of design 

variables, physical structure of the problem, nature of the equations involved, deterministic 

nature of the variables, permissible value of the design variables, separability of the functions 

and number of objective functions.  

Classification based on existence of constraints. 

1. Constrained optimization problems: which are subject to one or more constraints. 

2. Unconstrained optimization problems: in which no constraints exist. 

Classification based on the nature of the design variables 

1. There are two broad categories of classification within this classification  

2. First category : the objective is to find a set of design parameters that make a prescribed 

function of these parameters minimum or maximum subject to certain constraints. 

3. Second category: the objective is to find a set of design parameters, which are all 

continuous functions of some other parameter, that minimizes an objective function 

subject to a set of constraints.  

Classification based on the physical structure of the problem 

1. Based on the physical structure, we can classify optimization problems are classified as 

optimal control and non-optimal control problems.  

2. (i) An optimal control (OC) problem is a mathematical programming problem involving a 

number of stages, where each stage evolves from the preceding stage in a prescribed 

manner.  

 It is defined by two types of variables: the control or design variables and state 

variables. 

Classification based on the physical structure of the problem 

The problems which are not optimal control problems are called non-optimal control 

problems. 

Classification based on the nature of the equations involved 

Based on the nature of expressions for the objective function and the constraints, 

optimization problems can be classified as linear, nonlinear, geometric and quadratic 

programming problems. 

(i)Linear programming problem 
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If the objective function and all the constraints are linear functions of the design 

variables, the mathematical programming problem is called a linear programming (LP) 

problem. often stated in the standard form : 

 

(ii) Nonlinear programming problem 

If any of the functions among the objectives and constraint functions is nonlinear, the 

problem is called a nonlinear programming (NLP) problem this is the most general form 

of a programming problem.  

(iii)Geometric programming problem 

–A geometric programming (GMP) problem is one in which the objective function and 

constraints are expressed as polynomials in X. 

(iv) Quadratic programming problem􀁺A quadratic programming problem is the best 

behaved nonlinear programming problem with a quadratic objective function and linear 

constraints and is concave (for maximization problems).  

Classification based on the permissible values of the decision variables 

Under this classification problems can be classified asintegerand real-

valuedprogramming problems 

(i) Integer programming problem 

If some or all of the design variables of an optimization problem are restricted to take 

only integer (or discrete) values, the problem is called an integer programming problem.  

(ii) Real-valued programming problem 

A real-valued problem is that in which it is sought to minimize or maximize a real 

function by systematically choosing the values of real variables from within an allowed 

set. When the allowed set contains only real values, it is called a real-valued 

programming problem.  

Classification based on deterministic nature of the variables 

Under this classification, optimization problems can be classified as deterministic 

and stochastic programming problems. 

(i) Deterministic programming problem 
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In this type of problems all the design variables are deterministic. 

(ii) Stochastic programming problem 

In this type of an optimization problem some or all the parameters (design variables 

and/or pre-assigned parameters) are probabilistic (non deterministic or stochastic).  

  

Classification based on separability of the functions 

Based on the separability of the objective and constraint functions optimization problems 

can be classified as separableand non-separable programming problems. 

(i) Separable programming problems 

In this type of a problem the objective function and the constraints are separable. A 

function is said to be separable if it can be expressed as the sum of n single-variable 

functions  

Classification based on the number of objective functions 

Under this classification objective functions can be classified as single and 

multiobjective programming problems. 

(i)Single-objective programming problemin which there is only a single objective. 

(ii) Multi-objective programming problem 

A multiobjective programming problem can be stated as follows  

 

Scope of optimization 

Computational aspects of optimization problems arising in such areas as Aerospace, 

Biomedicine, Economics, Meteorology, and Public Services (Health, Environment, 

Police, Fire, Transportation, etc.). 

Examples are: 

1. on-line and off-line computational techniques in modelling and control of dynamic 

systems; 

2. trajectory analysis and computation; 
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3. optimization of decentralized systems (macro-economic systems) and systems with 

multicriteria; 

4. optimization of resource allocation in urban systems; 

5. optimization of pollution-control systems; 

6. optimization of man-machine systems; 

7. optimization of power systems operation.  

Hierarchy of optimization 

 

The Hierarchy of Optimization is the methodology behind conversion rate optimization. 

It provides a structured, systematic approach to improving the performance of your 

website and your conversions. 

The Hierarchy of Optimization framework is based on Maslow’s Hierarchy of 

Needs pyramid model. 

In Maslow’s Hierarchy of Needs, the most fundamental needs for human motivation are 

at the bottom. Only once these basic needs are satisfied can someone fulfill higher order 

psychological needs.  

(Food, water, shelter, and safety trump belonging, esteem, and self-actualization. But 

combine all of the levels together and you have a happy, motivated individual.) 

The five levels are: 

1. Purpose 

2. Accessible 

3. Usable 

4. Intuitive 

5. Persuasive 

1. Purpose 

http://torspark.com/hierarchy-of-optimization/
http://torspark.com/hierarchy-of-optimization/
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 Purpose is at the base of your optimization  hierarchy pyramid. Without a 

purpose, why even  have a website? 

2. Accessible 

 Having a purpose is great, but if your website can’t  be accessed then you are up a 

creek without a paddle. 

Does your website work? 

 Do all of the features on your website work? 

 Are their functions executable? 

3. Usable 

 Is your website usable?  

 Is your website designed to work on multiple  devices? 

4. Intuitive 

 Intuitive and usable strongly go hand-in-hand  with  each other. 

 Can visitors find what they are looking for  when they come to your website? 

 Yes? Great! … Is it where they expected to find it? 

5. Persuasive 

 The top of the mountain is only the top  because it has a whole mountain 

under it.  At the same time, you can only get to the  top of the mountain by 

climbing the rest of  it. 

• Persuasive is where you bring your branding, marketing, and content strategies into 

play. 

Typical applications of optimization. 

1. Design of aircraft and aerospace structures for  minimum weight 

2. Finding the optimal trajectories of space vehicles 

3. Design of civil engineering structures such as frames, foundations, bridges, towers, 

chimneys, and dams  for minimum cost 

4. Minimum-weight design of structures for  earthquake, wind, and other types of random 

loading 

5. Design of water resources systems for maximum  benefit 

6. Optimal plastic design of structures 
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7. Optimum design of linkages, cams, gears, machine tools, and other mechanical 

 components 

8. Selection of machining conditions in metal-cutting processes for minimum production 

cost 

9. Design of material handling equipment such as conveyors, trucks, and cranes for 

minimum cost 

10. Design of pumps, turbines, and heat transfer equipment for maximum efficiency. 

11. Optimum design of electrical machinery  such as motors, generators, and transformers 

12. Optimum design of electrical networks 

13. Shortest route taken by a salesperson visiting various cities during one tour 

14. Optimal production planning, controlling, and scheduling 

15. Analysis of statistical data and building empirical models from experimental results 

to obtain the  most accurate representation of the physical  phenomenon 

16. Optimum design of chemical processing equipment and plants 

17. Design of optimum pipeline networks for process industries 

18. Selection of a site for an industry 

19. Planning of maintenance and replacement of equipment to reduce operating costs 

20. Inventory control 

21. Allocation of resources or services among several activities to maximize the benefit  

22. Controlling the waiting and idle times and queueing in production lines to reduce the 

 costs 

23. Planning the best strategy to obtain maximum profit in the presence of a 

 competitor 

24. Optimum design of control systems 
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Module II 

Essential features of optimization problems 

STATEMENT OF AN OPTIMIZATION PROBLEM 

An optimization or a mathematical programming problem can be stated as follows. 

 

subject to the constraints 

 

where  

1. X is an n-dimensional vector called the design vector,  

2. f(X) is termed the objective Junction, and  

3. gj (X) is known as inequality constraints and  

4. Ij (X) are known as equality constraints,  

The number of variables n and the number of constraints m and/or p need not be related in any 

way. 

1. The problem stated is called a constrained optimization problem. 

2. Some optimization problems do not involve any constraints and can be stated as: 

 

Such problems are called unconstrained optimization  problems. 

Design Vector 

Any engineering system is defined by a set of quantities: 

1. Some are fixed and these are called preassigned parameters.  

2. Some are viewed as variables during the design process and are called design or decision 

variables xi = 1,2,. . .,n.. 
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3. The design variables are collectively represented as a design vector 

 

Design Constraints 

      1. Design variables have to satisfy certain specified functional and other requirements. 

      2. The restrictions that must be satisfied to produce an acceptable design are collectively 

called design constraints 

1. Constraints that represent limitations on the behavior or performance of the system are 

termed behavior or functional constraints. 

2. Constraints that represent physical limitations on design variables such as availability, 

fabricability, and transportability are known as geometric or side constraints. 

Constraint Surface 

1. The set of values of X that satisfy the equation gj (X) = 0 forms a hypersurface in the design 

space and is called a constraint surface. 

2. The collection of all the constraint surfaces     gj (X) = 0, j = 1,2,. . .,m, which separates the 

acceptable region is called the composite constraint surface. 
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1. A design point that lies on one or more than one constraint surface is called a bound point. 

2. the associated constraint in a bound point is called an active constraint. 

3. Design points that do not lie on any constraint surface are known as free points. 

Point can be identified as one of the following four types: 

1. Free and acceptable point 

2. Free and unacceptable point 

3. Bound and acceptable point 

4. Bound and unacceptable point 

Objective Function 

1. The criterion with respect to which the design is optimized, when expressed as a function of 

the design variables, is known as the criterion or merit or objective function. 

2. The choice of objective function is governed by the nature of problem. 

An optimization problem involving multiple objective functions is known as a multiobjective 

programming problem. 

Continuous functions 

1. A continuous function is a function in that  small changes in the input  result in 

arbitrarily small changes in its output. If not continuous, a function is said to be 

discontinuous. 

2. The term continuous refers to a function whose graph has no holes or breaks the 
optimization of continuous functions subjected to equality constraints: 

Minimize f = f(X) 

subject to  

gj(X) = 0, J = 1,2,. . .,m 

where 

 

Here m is less than or equal to n; 

Discrete functions 
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If a function is discrete, it does not include all of the values between two given numbers, 

but rather only specific values in a particular range. 

1. A bank account 

2. The balance in a bank account is counted in dollars and cents, any change is countable and 

quantifiable. This is an example of a discrete function. 

Unimodal functions 

1. A unimodal function is one that has only one peak (maximum) or valley (minimum) 

in a given interval. 

2. A function f(x) is unimodal if  

 (i) X1 < X2 < x* implies that f(x2) < f(x1), 

            and  

      (ii) X2 > X1 > x* implies that f(x1) < f(x2), where  x* is the minimum point. 

 

Convex and concave functions 

Convex Function A function f(X) is said to be convex if for any pair of points 

 

  

 

Concave Function A function Z(X) is called a concave function if for any two points X1 and 

X2, and for all O ≤ X ≤  1 

 

Negative of a convex function is a concave function, and vice versa. 

convex function in one variable 
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convex function in two variables 

 

Hessian matrix 

In mathematics, the Hessian matrix or Hessian is a square matrix of second-order partial 

derivatives of a scalar-valued function, or scalar field 

Suppose f : ℝn → ℝ is a function taking as input a vector x ∈ ℝn and outputting a scalar f(x) 

∈ ℝ. If all second partial derivatives of f exist and are continuous over the domain of the 

function, then the Hessian matrix H of f is a square n×n matrix, usually defined and arranged 

as follows: 

https://en.wikipedia.org/wiki/Mathematic
https://en.wikipedia.org/wiki/Square_matrix
https://en.wikipedia.org/wiki/Partial_derivative
https://en.wikipedia.org/wiki/Partial_derivative
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Scalar_field
https://en.wikipedia.org/wiki/Scalar_field
https://en.wikipedia.org/wiki/Partial_derivative
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1. The Hessian matrix is a symmetric matrix 

2. The determinant of the Hessian matrix is called the Hessian determinant. 

Convex and concave functions 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Symmetric_matrix
https://en.wikipedia.org/wiki/Symmetric_matrix
https://en.wikipedia.org/wiki/Determinant
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Investment costs and operating costs in objective function 

Investment Costs 

Investment Costs means the costs including but not limited to, construction costs, 

operating costs, development costs and other costs related to the Project up to the date of 

termination of the MOU. 

Investment Costs means the hard and soft costs of acquisition, design, development and 

construction of the Company Facility, including without limitation 

 (i) the costs of acquiring the Property;  

(ii) the costs to prepare the Property for any of the improvements constructed on or within the 

Property and constructing any required site work infrastructure such as streets and roads, water 

and electric utilities, gas utilities, drainage and related improvements and/or telecommunications 

and internet improvements;  

(iii) the costs of obtaining all necessary governmental permits and approvals;  

(iv) the costs of design, engineering, materials, labor, construction, and other services arising in 

connection with the design and construction of the Company Facility;  

(v) all payments arising under any contracts entered into for the design or construction of the 

Company Facility;  

(vi) legal costs and consultant fees;  

(vii) reimbursements to any developer/contractor for the actual costs described above that are 

advanced to or on behalf of Company;  

(viii) costs of furniture, fixtures, equipment and inventory; and 

 (ix) miscellaneous expenses. 

Operating cost 

Operating costs or operational costs, are the expenses which are related to the operation of a 

business, or to the operation of a device, component, piece of equipment or facility. 

https://en.wikipedia.org/wiki/Expense
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1. Operation cost, often referred to as operating cost, is the money that it takes to run your 

business. 

2. These are the day-to-day business expenses required to keep the lights on and to have the staff 

necessary to sell and fulfill customer needs. 

3. Operating costs also include the costs of buying or making your products and services. These 

are often called the cost of goods sold (COGS). 

4. These are the costs that are subtracted from total revenues to generate the gross revenue 

numbers. Operating expenses are then subtracted from this, with taxes and interest on loans to 

determine the net profit of the company. 

Different Types of Operating Costs 

1. Fixed costs.  

1. Fixed costs are those that do not change  as sales rise or fall.  

 2 .They do not reflect the productivity of a  company, and a company must 

continue to  pay them irrespective of its performance. 

 3. Such costs include overhead,  administrative  expenses, insurance,  security, and 

equipment,  among other  things. 

2. Variable costs.  

 1. Variable costs are those that change as a company's sales and production rise or fall.  

 2. They include such line items as the cost of raw materials, production payroll, and 

electricity.  

 3. As production increases, a company must buy more raw materials, hire more 

production personnel or use more electricity,  incurring higher costs. 

3. Semi-variable costs.  

 1. There is a third category of costs: Semi-variable costs, also known as a semi-fixed 

or mixed costs.  

 2. Such costs may resemble fixed costs at or below a particular level of sales or 

production, but change as sales or production rise above that level.   

 3. An example is overtime wages: Below a certain  level of production, overtime is non-

existent and  fixed; above that level, it becomes variable and rises or falls as production does. 

How to Calculate Operating Costs 

Total operating costs = Cost of goods sold (COGS) + operating expenses (OPEX) 

Cost of goods sold(cost of sales) 



CSE DEPARTMENT, NCERC PAMPADY Page 39 
 

1. Cost of goods sold, also called the cost of sales, are the expenses directly tied to the 

production of goods or services. 

2. Subtracting COGS from revenues yields gross profit or loss. 

The cost of goods sold includes the following: 

1. Direct costs of material 

2. Direct costs of labor 

3. Direct costs of material 

4. Rent of the plant or production facility 

5. Benefits and wages for the production workers 

6. Repair costs of equipment 

7. Utility costs and taxes of the production facilities 

Operating expenses 

1. Operating expenses are the expenses a business incurs through its normal business operations 

that are not otherwise accounted for in the cost of goods sold. 

2. operating expenses cannot be linked directly to the production of the products or services a 

company sells. 

Operating expenses include: 

1. Rent 

2. Equipment 

3. Inventory costs 

4. Advertising and marketing 

5. Payroll 

6. Insurance premiums 

7. Research and development 

Optimizing profitably constraints 

Every process has a constraint (bottleneck) and focusing improvement efforts on that constraint 

is the fastest and most effective path to improved profitability. 

The Theory of Constraints is a methodology for identifying the most important limiting factor 

(i.e. constraint) that stands in the way of achieving a goal and then systematically improving that 

constraint until it is no longer the limiting factor. 
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Every complex system, including manufacturing processes, consists of multiple linked activities, 

one of which acts as a constraint upon the entire system (i.e. the constraint activity is the 

“weakest link in the chain”). 

The ultimate goal of most manufacturing companies is to make a profit – both in the short term 

and in the long term. 

Tools for helping to achieve that goal, including: 

1. The Five Focusing Steps (a methodology for identifying and eliminating constraints) 

2. The Thinking Processes (tools for analyzing and resolving problems) 

3. Throughput Accounting (a method for measuring performance and guiding 

management decisions) 

A successful Theory of Constraints  

implementation will have the following benefits: 

1. Increased profit (the primary goal of TOC for most companies) 

2. Fast improvement (a result of focusing all attention on one critical area – the system 

constraint) 

3. Improved capacity (optimizing the constraint enables more product to be manufactured) 

4. Reduced lead times (optimizing the constraint results in smoother and faster product 

flow) 

5. Reduced inventory (eliminating bottlenecks means there will be less work-in-process) 

The core concept of the Theory of Constraints is that every process has a single constraint and 

that total process throughput can only be improved when the constraint is improved. 

Spending time optimizing non-constraints will not provide significant benefits; only 

improvements to the constraint will further the goal (achieving more profit). 

The Theory of Constraints uses a process known as the Five Focusing Steps to identify and 

eliminate constraints (i.e. bottlenecks). 

The Five Focusing Steps 
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Step Objective 

Identify Identify the current constraint (the single part of the process that limits the rate at which 

the goal is achieved). 

Exploit Make quick improvements to the throughput of the constraint using existing resources (i.e. 

make the most of what you have). 

Subordinate Review all other activities in the process to ensure that they are aligned with and truly 

support the needs of the constraint. 

Elevate If the constraint still exists (i.e. it has not moved), consider what further actions can be 

taken to eliminate it from being the constraint. Normally, actions are continued at this step 

until the constraint has been “broken” (until it has moved somewhere else). In some cases, 

capital investment may be required. 

Repeat The Five Focusing Steps are a continuous improvement cycle. Therefore, once a constraint 

is resolved the next constraint should immediately be addressed. This step is a reminder to 

never become complacent – aggressively improve the current constraint…and then 

immediately move on to the next constraint. 

 

The Thinking Processes 

1. The Thinking Processes are optimized for complex systems with many interdependencies (e.g. 

manufacturing lines). 

2. They are designed as scientific “cause and effect” tools, which strive to first identify the root 

causes of undesirable effects (referred to as UDEs), and then remove the UDEs without creating 

new ones. 

1. The Thinking Processes are used to answer the following three questions, which are 

essential to TOC: 

2. What needs to be changed? 

3. What should it be changed to? 

4. What actions will cause the change? 

Tools that have been formalized as part of the Thinking Processes include: 
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Tool Role Description 

Current 

Reality Tree 

Documents the current state. Diagram that shows the current state, which is 

unsatisfactory and needs improvement. When creating the 

diagram, UDEs (symptoms of the problem) are identified 

and traced back to their root cause (the underlying 

problem). 

Evaporating 

Cloud Tree 

Evaluates potential 

improvements. 

Diagram that helps to identify specific changes (called 

injections) that eliminate UDEs. It is particularly useful 

for resolving conflicts between different approaches to 

solving a problem. It is used as part of the process for 

progressing from the Current Reality Tree to the Future 

Reality Tree. 

Future Reality 

Tree 

Documents the future state. Diagram that shows the future state, which reflects the 

results of injecting changes into the system that are 

designed to eliminate UDEs. 

Strategy and 

Tactics Tree 

Provides an action plan for 

improvement. 

Diagram that shows an implementation plan for achieving 

the future state. Creates a logical structure that organizes 

knowledge and derives tactics from strategy. Note: this 

tool is intended to replace the formerly used Prerequisite 

Tree in the Thinking Processes. 

 

Throughput Accounting 

Throughput Accounting is an alternative accounting methodology that attempts to eliminate 

harmful distortions introduced from traditional accounting practices 

Core Measures Definition 

Throughput The rate at which customer sales are generated less truly variable costs (typically raw 

materials, sales commissions, and freight). Labor is not considered a truly variable 

cost unless pay is 100% tied to pieces produced. 

Investment Money that is tied up in physical things: product inventory, machinery and 

equipment, real estate, etc. Formerly referred to in TOC as Inventory. 

Operating 

Expense 

Money spent to create throughput, other than truly variable costs (e.g. payroll, 

utilities, taxes, etc.). The cost of maintaining a given level of capacity. 

1. Net Profit = Throughput − Operating Expenses 
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2. Return on Investment = Net Profit / Investment 

3. Productivity = Throughput / Operating Expenses 

4. Investment Turns = Throughput / Investment 

Internal and External constraints 

1. An internal constraint is usually within the control of the business.  

2. An external constraint is outside the business and is difficult to control. 

Internal constraints 

These are factors within the control of the business that are restricting it achieving its objectives 

The main internal constraints are:- 

1. Finance - has the business enough money to be able to finance growth?  

 -If there was not enough cash within the  business itself then is the business strong 

 enough financially to be able to borrow  money? 

 -Is the business profitable? 

2. Marketing - has the business got a strong marketing position?  

 -Does it have a brand name and a suitable  image? 

 -Can it supply an increasing market should  it grow? 

3. People - have the staff the skills to do the jobs that they are expected to perform?  

– Does the business support training to make sure staff can do the job? 

4. Production - has the business extra capacity to increase production if and when 

necessary? 

External constraints 

A constraint is something that stops you doing something. So, in business, an external constraint 

is something that exists outside of the business that stops the business doing whatever it wants. 

 

Examples are: 

1. Laws 

2. Consumer Protection Agencies 

3. Pressure Groups 

4. The Government 
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External constraints are constraints that are thrust upon a company.   

The company has no (or little) control over the constraint.   

The company must build their product and systems around that constraint.  

 They must learn to live with it. 

Often internal and external constraints go hand in hand and there is a fine dividing line between 

them. 

 For example interest rates are an external constraint and this causes an internal constraint in that 

it makes the borrowing money more expensive for the business. 

Formulation of optimization problems 

Optimization models (also called mathematical programs) represent problem choices as decision 

variables and seek values that maximize (or minimize) objective functions of the decision 

variables subject to constraints on variable values expressing the limits on possible decision 

choices. 

 

Decision Variables, x 
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Module III 

Necessary and sufficient conditions for optimum of 
unconstrained functions 

Points of maxima and minima (extrema). 
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Necessary condition 

It is assumed that the first and second partial derivatives of f(X) are continuous for all X.  

 

Sufficient condition 
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Numerical methods for unconstrained functions 

The Newton-Raphson Method 

1. The necessary condition equations,    , may be difficult to solve numerically 

2. The Newton-Raphson method is an iterative procedure for solving simultaneous nonlinear 

equations. 

3. The Newton method was originally developed by Newton for solving nonlinear equations and 

later refined by Raphson, and hence the method is also known as Newton-Raphson method in the 

literature of numerical analysis. 

4.The method requires both the first- and second-order derivatives of f(X). 
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Determine the stationary points of the function 

 

Starting with  

To determine the stationary points, we need to solve 

 

Thus, for the Newton-Raphson method, we have 
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Starting with  the following table provides the successive iterations: 

 

 

 

Numerical methods for unconstrained functions 

The basic philosophy of most of the numerical methods of optimization is to produce a sequence 

of improved approximations to the optimum according to the following scheme. 
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ELIMINATION METHODS 

UNRESTRICTED SEARCH 

1. In most practical problems, the optimum solution is known to lie within restricted ranges of 

the design variables.  

2. In some cases this range is not known, and hence the search has to be made with no 

restrictions on the values of the variables. 

Search with Fixed Step Size 

1. The most elementary approach for such a problem is to use a fixed step size and move from an 

initial guess point in a favorable direction (positive or negative). 

2. The step size used must be small in relation to the final accuracy desired. 

This method is described in the following steps. 
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Linear Programming 

1. Linear programming is an optimization method applicable for the solution of problems in 

which the objective function and the constraints appear as linear functions of the decision 

variables. 

2. The constraint equations in a linear programming problem may be in the form of equalities or 

inequalities 

3. The linear programming type of optimization problem was first recognized in the 1930s by 

economists while developing methods for the optimal allocation of resources. 

4. During World War II the U.S. Air Force sought more effective procedures of allocating 

resources and turned to linear programming. 

5. George B.Dantzig, who was a member of the Air Force group, formulated the general linear 

programming problem and devised the simplex method of solution in 1947. 
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6. Linear programming is considered a revolutionary development that permits us to make 

optimal decisions in complex situations. 

7. At least four Nobel Prizes were awarded for contributions related to linear programming. 

8. The simplex method continues to be the most efficient and popular method for solving general 

LP problems. 

APPLICATIONS OF LINEAR PROGRAMMING 

1. One of the early industrial applications of linear programming has been made in the 

petroleum refineries. 

In general, an oil refinery has a choice of buying crude oil from several different 

sources with differing compositions and at differing prices.  

It can manufacture different products, such as aviation fuel, diesel fuel, and 

gasoline, in varying quantities. 

The constraints may be due to the restrictions on the quantity of the crude oil 

available from a particular source, the capacity of the refinery to produce a 

particular product, and so on.  

A mix of the purchased crude oil and the manufactured products is sought that 

gives the maximum profit. 

2. One of the early industrial applications of linear programming has been made in the 

petroleum refineries. 

3. The optimal production plan in a manufacturing firm can also be decided using linear 

programming. 

4. In the food-processing industry, linear programming has been used to determine the 

optimal shipping plan for the distribution of a particular product from different 

manufacturing plants to various warehouses. 

5. In the iron and steel industry, linear programming was used to decide the types of 

products to be made in their rolling mills to maximize the profit. 

6. The optimal production plan in a manufacturing firm can also be decided using linear 

programming. 

7. Paper mills use it to decrease the amount of trim losses. 

8. The optimal routing of messages in a communication network and the routing of aircraft 

and ships can also be decided using linear programming. 

9. Linear programming has also been applied to formulate and solve several types of 

engineering design problems, such as the plastic design of frame structures. 
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STANDARD FORM OF A LINEAR PROGRAMMING PROBLEM 

The general linear programming problem can be stated in the following standard form: 

1. Scalar form 

 

2. Matrix form 
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Characteristics of a linear programming 

The characteristics of a linear programming problem, stated in the standard form, are: 

1. The objective function is of the minimization  type. 

2. All the constraints are of the equality type. 

3. All the decision variables are nonnegative. 

Feasible Solution In a linear programming problem, any solution that satisfies the constraints 

aX = b 

X ≥ 0 

is called a feasible solution. 

Definitions 

Basic Solution A basic solution is one in which n — m variables are set equal to zero. A basic 

solution can be obtained by setting n — m variables to zero and solving the constraint Eqs. aX = 

b simultaneously. 

Basis The collection of variables not set equal to zero to obtain the basic solution is called the 

basis. 
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Basic Feasible Solution This is a basic solution that satisfies the nonnegativity conditions of Eq. 

X ≥ 0 

Nondegenerate Basic Feasible Solution This is a basic feasible solution that has got exactly m 

positive Xi. 

Optimal Solution A feasible solution that optimizes the objective function is called an optimal 

solution. 

Optimal Basic Solution This is a basic feasible solution for which the objective function is 

optimal. 
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GRAPHICAL LP SOLUTION 

The graphical procedure includes two steps: 

1. Determination of the feasible solution space. 

2. Determination of the optimum solution from among all the feasible points in the solution 

space. 

Solution of a Maximization Model 

This example solves the Reddy Mikks model of Example 2.1-1. 

Step 1. Determination ofthe Feasible Solution Space: 
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Step 2.  
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Determination ofthe Optimum Solution: 



CSE DEPARTMENT, NCERC PAMPADY Page 61 
 

 

 

MOTIVATION OF THE SIMPLEX METHOD 

one way to find the optimal solution of the given linear programming problem is to generate all 

the basic solutions and pick the one that is feasible and corresponds to the optimal value of the 

objective function. 

If there are m equality constraints in n variables with n ≥ m, a basic solution can be obtained by 

setting any of the n — m variables equal to zero. 
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The number of basic solutions to be inspected is thus equal to the number of ways in which m 

variables can be selected from a set of n variables, that is, 

 

1. we do not have to inspect all these basic solutions since many of them will be infeasible. 

2. The simplex method of Dantzig is a powerful scheme for obtaining a basic feasible solution; if 

the solution is not optimal, the method provides for finding a neighboring basic feasible solution 

that has a lower or equal value of f. 

3. Rather than enumerating all the basic solutions (corner points) of the LP problem the simplex 

method investigates only a "select few" of these solutions. 

Iterative Nature of the Simplex Method 
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CSE DEPARTMENT, NCERC PAMPADY Page 64 
 

 

 

The design of the tableau specifies the set of basic and non-basic variables as well as provides the 

solution associated with the starting iteration 

The simplex iterations start at the origin (X1, X2) = (0,0) whose associated set of nonbasic and basic 

variables are defined as 
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Is the starting solution optimal? The objective function z = 5x1 + 4x2 shows that the solution 

can be improved by increasing X1 or X2. 

X1 with the most positive coefficient is selected as the entering variable. Equivalently, because 

the simplex tableau expresses the objective function as z - 5x1 - 4x2 = 0, the entering variable 

will correspond to the variable with the most negative coefficient in the objective equation. This 

rule is referred to as the optimality condition. 
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Summary of the Simplex Method 
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Apparent difficulties in the Simplex method. 

1. Given n decision variables, you can always find a problem instance where the algorithm 

requires O(2n) operations and pivots to arrive at a solution. 

2. Not so great for large problems, because pivoting operations become expensive. 

3. Simplex method Involves understanding of many conceptual technical aspects. These 

cannot be understood by any manager not conversant with the subject. 

4. Graphic solution method has lot of applications and is relatively short and simple. 

However, it has limitations and cannot be applied to problems with more than two 

variables in the objective function. 

5. Simplex method of LPP can be applied to problems with more than two variables in the 

objective function, the procedure adopted is complicated and long. It may need 

computation of 4 to 5 simplex tables and can test the patience of the problem solver. 

Computers are of course helpful in such cases. 
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6. Linear programming problems need lot of expertise, time and are cumbersome. A number 

of steps have to be adopted to proceed in a systematic manner before one can arrive at the 

solution. 

7. LPP does not lead to ‘a unique’ optimal solution. It can provide different types of 

solutions like feasible solution, infeasible solution, unbounded solution, degenerate 

solution etc. 

8. It gives absurd or impractical results in many solutions.  

9. LPP model makes many assumptions in the values of objective function and constraint 

variables, like the rate of profit. In fact, such assumptions may not be right. 

10. The whole approach to the solution is based on the linearity of the functions i.e., all the 

variables involved in the problem increase or decrease in a linear manner. This 

assumption does not hold good in all cases. In many cases, the objective function may 

assume the form of a quadratic equation. 
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Module IV 

4.1 TRANSPORTATION PROBLEM 

1. Transportation problems are also linear programming problems and can be solved by 
simplex method. 
2. The transportation model is a special class of linear programs that deals with 
shipping a commodity from sources (e.g., factories) to destinations (e.g., warehouses). 
3. The objective is to determine the shipping schedule that minimizes the total 
shipping cost while satisfying supply and demand limits. 

4. The application of the transportation model can be extended to other areas of 
operation, including inventory 
control, employment scheduling, and personnel assignment. 
 

 

DEFINITION OF THE TRANSPORTATION MODEL 

 

Figure 4.1 Representation of the transportation model with nodes and arcs 

The general problem is represented by the network in Figure 4.1. There are m sources and n 

destinations, each represented by a node. The arcs represent the routes linking the sources and 

the destinations. Arc (i, j) joining source i to destination j carries two pieces of information: the 

transportation cost per unit, cij, and the amount shipped, xij. The amount of supply at source i is ai 

and the amount of demand at destination j is bj • The objective of the model is to determine the 

unknowns xij that will minimize the total transportation cost while satisfying all the supply and 

demand restrictions. 

 

Example 4.1 

A scooter production company produces scooters at the units situated at various places (called 

origins) and supplies them to the places where the depot (called destination) are situated. 

Here the availability as well as requirements of the various depots are finite and constitute the 

limited resources. 
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This type of problem is known as distribution or transportation problem in which the key 

idea is to minimize the cost or the time of transportation. 

MATHEMATICAL FORMULATION OF TRANSPORTATION PROBLEM 
Let there be three units, producing scooter, say, A1, A2 and A3 from where the scooters are to be 
supplied to four depots say B1, B2, B3 and B4. 
Let the number of scooters produced at A1, A2 and A3 be a1, a2 and a3 respectively and the 
demands at the depots be b2, b1, 
b3 and b4 respectively. 
Assume the condition 
a1+a2+a3 = b1+b2+b3+b4 

i.e., all scooters produced are supplied to the different depots. Let the cost of transportation of 
one scooter from A1 to B1 be c11. Similarly, the cost of transportations in other casus are also 
shown in the Figure 4.2 and Table 1. 
Let out of a1 scooters available at A1, x11 be taken at B1 depot, x12 be taken at B2 depot and to 
other depots as well, as  
shown in the following figure and table 1. 

 
Figure 4.2  

Total number of scooters to be transported form A1 to all destination, i.e., B1, B2, B3, and B4 must 
be equal to a1. 

  x11+x12+x13+x14 =a1   (1) 
Similarly, from A2 and A3 the scooters transported be equal 
to a2 and a3 respectively. 

  x21+x22+x23+x24 = a2   (2) 
and   x31+x32+x33+x34 = a3   (3) 
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On the other hand it should be kept in mind that the total number of scooters delivered to B1 

from all units must be equal to b1, i.e., 
x11+x21+x31 = b1   (4) 

Similarly,  x12+x22+x32 = b2   (5) 
x13+x23+x33 = b3  (6) 
x14+x24+x34 = b4   (7) 

With the help of the above information we can construct thefollowing table : 
 

Table 1 

 
The cost of transportation from Ai (i=1,2,3) to Bj (j=1,2,3,4) will be equal to 

 
where the symbol put before cij xij signifies that the quantities cij xij must be summed over all i = 
1,2,3 and all 
j = 1,2,3,4. 
Thus we come across a linear programming problem given by equations (1) to (7) and a linear 
function (8). 
 
(A)  Feasible Solution (F.S.) 

A set of non-negative allocations xij 0 which satisfies the row and column restrictions is known 
as feasible solution. 
(B)  Basic Feasible Solution (B.F.S.) 
A feasible solution to a m-origin and n-destination problem is said to be basic feasible solution if 
the number of positive allocations are (m+n–1). 
If the number of allocations in a basic feasible solutions are less than (m+n–1), it is called 
degenerate basic feasible solution (DBFS) (otherwise non-degenerate). 
(C)  Optimal Solution 

A feasible solution (not necessarily basic) is said to be optimal if it minimizes the total 
transportation cost. 
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THE STEPS OF THE TRANSPORTATION ALGORITHM 

Step 1. Determine a starting basic feasible solution, and go to step 2. 

Step 2. Use the optimality condition of the simplex method to determine the entering variable 

from among all the nonbasic variables. If the optimality condition is satisfied, stop. Otherwise, 

go to step 3. 

Step 3. Use the feasibility condition of the simplex method to determine the leaving variable 

from among all the current basic variables, and find the new basic solution. Return to step 2. 

 

Step 1. Determine a starting basic feasible solution 

There are three different methods to obtain the initial basic feasible solution viz. 

(I) North-West corner rule 

(II) Lowest cost entry method 

(III) Vogel’s approximation method 

 

Example: 

Table 2 

 
(I) North-West corner rule 

In this method we distribute the available units in rows and column in such a way that the sum 

will remain the same. The method starts at the northwest-corner cell (route) of the tableau 

(variable xu). We have to follow the steps given below. 

Step 1. Allocate as much as possible to the selected cell, and adjust the associated amounts of 

supply and          

 demand by subtracting the allocated amount. 

Step 2. Cross out the row or column with zero supply or demand to indicate that no further 

assignments can be  
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made in that row or column. If both a row and a column net to zero simultaneously, cross 

out one only, and leave a zero supply (demand) in the uncrossed-out TOW (column). 

Step 3. If exactly one row or column is left uncrossed out, stop. Otherwise, move to the cell to 

the right if a   

 column has just been crossed out or below if a row has been crossed out. Go to step 1. 

 
(a) Start allocations from north-west corner, i.e., from (1,1) position. Here min (a1, b1), i.e., min 
(8,6)=6 units. Therefore, the maximum possible units that can be allocated to this position is 6, 
and write it as 6(2) in the (1,1) position of the table. This completes the allocation in the first 
column and cross the other positions, i.e., (2,1) and (3,1) in the column. (see Table 3) 
 
 

 
 

Table 3 

 
 
(b) After completion of step (a), come across the position (1,2). Here min (8–6,8)=2 units can be 
allocated to this position and write it as 2(3). This completes the allocations in the first row and 
cross the other positions, i.e., (1,3) and (1,4) in this row (see Table 4). 

 

Table 4 
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(c) Now come to second row, here the position (2,1) is already been struck off, so consider the 
position (2,2). Here min (10,8–2)=6 units can be allocated to this position and write it as 6(3). 
This completes the allocations in second column so strike off the position (3,2) (see Table 5) 

Table 5 

 
 

(d) Again consider the position (2,3). Here, min (10–6,9)=4 units can be allocated to this position 
and write it as 4(4). This completes the allocations in second row so struck off the position (2,4) 
(see Table 6). 

Table 6 
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(e) In the third row, positions (3,1) and (3,2) are already been struck off so consider the position 
(3,3) and allocate it the maximum possible units, i.e., min (20,9–4)=5 units and write it as 5(7). 
Finally, allocate the remaining units to the position (3,4), i.e., 15 units to this position and write it 
as 15(2). 
Keeping in mind all the allocations done in the above method complete the table as follows: 
 

Table 7 
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(II) Lowest cost entry method 

The least-cost method finds a better starting solution by concentrating on the cheapest routes. The 

method assigns as much as possible to the cell with the smallest unit cost (ties are broken arbitrarily). 

Next, the satisfied row or column is crossed out and the amounts of supply and demand are adjusted 

accordingly. 

(a) In this method we start with the lowest cost position. Here it is (1,4) and (3,2) positions, 
allocate the maximum possible units to these positions, i.e., 8 units to the position (1,4) and 8 
units to position (3,2), write them as 8(1) and 8(1) respectively, then strike off the other positions 
in row 1 and also in column 2, since all the available units are distributed to these positions. 
 
(b) Consider the next higher cost positions, i.e., (1,1) and (3,4) positions, but the position (1,1) is 
already been struck off so we can’t allocate any units to this position. Now allocate the 
maximum possible units to position (3,4), i.e., 7 units as required by the place and write it as 
7(2). Hence the allocations in the column 4 is complete, so strike off the (2,4) position. 
 
(c) Again consider the next higher cost position, i.e., (1,2) and (2,2) positions, but these 
positions are already been struck off so we cannot allocate any units to these positions. 
 
(d) Consider the next higher positions, i.e., (2,3) and (3,1) positions, allocate the maximum 
possible units to these positions, i.e., 9 units to position (2,3) and 5 units to position (3,1), write 
them as 9(4) and 5(4) respectively. In this way allocation in column 3 is complete so strike off 
the (3,3) position. 

Table 8 
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Table 9 

 
 

 
 
 
 
 
 
 

Tavle 10 
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(e) Now only the position (2,1) remains and it automatically takes the alloation 1 to complete the 
total in this row, therefore, write it as 1(7). 

 
With the help of the above facts complete the allocation table as given below. 
 

Table 11 

 
 
From the above facts, calculate the cost of transportation as 

 
= 8 + 7 + 36 + 20 + 8 + 14 
= 93   i.e., Rs. 9300. 
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(III) Vogel’s approximation method 

VAM is an improved version of the least-cost method that generally, but not always, produces better 

starting solutions. 

 

Step 1. For each row (column), determine a penalty measure by subtracting the smallest unit cost 

element in the row  

 (column) from the next smallest unit cost element in the same row (column). 

Step 2. Identify the row or column with the largest penalty. Break ties arbitrarily. Allocate as much 

as possible to the  

variable with the least unit cost in the selected row or column. Adjust the supply and demand, 

and cross out  the satisfied row or column. If a row and a column are satisfied 

simultaneously, only one of the two is crossed out, and the remaining row (column) is 

assigned zero supply (demand). 

Step 3. (a) If exactly one row or column with zero supply or demand remains uncrossed out, stop. 

(b) If one row (column) with positive supply (demand) remains uncrossed out, determine the 

basic variables    

 in the row (column) by the least-cost method. Stop. 

(c) If all the uncrossed out rows and columns have (remaining) zero supply and demand, 

determine the zero  

 basic variables by the least-cost method. Stop. 

(d) Otherwise, go to step 1. 

 
(a1) Write the difference of minimum cost and next to minimum cost against each row in the 
penalty column. 
(This difference is known as penalty). 
(a2) Write the difference of minimum cost and next to minimum cost against each column in the 
penalty row. 
(This difference is known as penalty). 
We obtain the table as given below. 

Table 12 
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(b) Identify the maximum penalties. In this case it is at column one and at column two. Consider 
any of the two columns, (here take first column) and allocate the maximum units to the place 
where the cost is minimum (here the position (1,1) has minimum cost so allocate the maximum 
possible units, i.e., 6 units to this positon). Now write the remaining stock in row one. After 
removing the first column and then by repeating the step (a), we obtain as follows: 

Table 13 
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(c) Identify the maximum penalties. In this case it is at row one and at column two. Consider any 
of the two (let it be first row) and allocate the maximum possible units to the place where the 
cost is minimum (here the position (1,4) has minimum cost so allocate the maximum possible 
units, i.e., 2 units to this position). Now write the remaining stock in column four. After removing 
the first row and by repeating the step(a), we obtain table 14 as given below. 

Table 14 

 
 

 
(d) Identify the maximum penalties. In this case it is at column four. Now allocate the maximum 
possible units to the minimum cost position (here it is at (3,4) position and allocate maximum 
possible units, i.e., 13 to this positon). Now write the remaining stock in row three. After 
removing the fourth column and then by repeating the step (a) we obtain table 15 as given 
below. 

Table 15 
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(e) Identify the maximum penalties. In this case it is at row three. Now allocate the maximum 
possible units to the minimum cost position (here it is at (3,2) position and allocate maximum 
possible units, i.e., 7 to this position). Now in orderto complete the sum, (2,2) position will take 1 
unit and (2,3) position will be allocated 9 units. 
This completes the allocation and with the help of the above informations draw table 16 as 
under. 

Table 16 

 
From the above facts calculate the cost of transportation as 

 
= 12 + 2 + 3 + 36 + 7 + 26 
= 86 
i.e., Rs. 8600. 
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Iterative Computations of the Transportation Algorithm 

 

After determining the starting solution (using any of the three methods), we use the following 

algorithm to determine the optimum solution: 

Step 1. Use the simplex optimality condition to determine the entering variable as the current 

nonbasic variable  

 that can improve the solution. If the optimality condition is satisfied, stop. Otherwise, go 

to step 2. 

 

Step 2. Determine the leaving variable using the simplex feasibility condition. Change the basis, 

and return to  

 step 1. 

 
Test for Optimization : 

 
Solutions so obtained may be  optimal or may not be optimal, so it becomes essential for us to 
test for optimization. 

 

Definition: A basic feasible solution of an (m n) transportation problem is said to be non-
degenerate if it has following two properties : 

 
(a) Initial basic feasible solution must contain exactly m+n–1 number of individual allocations. 
 
(b) These allocations must be in independent positions. Independent positions of a set of 
allocations means that it is always impossible to form any closed loop through these allocations. 
See fig. given below. 
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Algorithm for optimality test : 
 
In order to test for optimality we should follow the procedure as given below: 
 
Step 1: Start with B.F.S. consisting of m+n–1 allocations in independent positions. 

 
Step 2: Determine a set of m+n numbers ui (i=1,2,....m) and vj (j=1,2,...n) such that for each 

occupied cells (r,s) 
crs = ur+vs 

 

Step 3: Calculate cell evaluations (unit cost difference) dj for each empty cell (i,j) by using the 
formula 

dij = cij – ( ui+vj ) 
 

Step 4: Examine the matrix of cell evaluation dij for negative entries and conclude that 

 

(i) If all dij > 0 Solution is optimal and unique. 
 

(ii) If all dij 0 At least one dij = 0 

Solution is optimal and alternate solution also exists. 
 

(iii) If at least one dij < 0 Solution is not optimal. If it is so, further improvement is 
required by  
 repeating the above process. See step 5 and onwards. 
 

Step 5: (i) See the most negative cell in the matrix [ dij ]. 
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(ii) Allocate to this empty cell in the final allocation table. Subtract and add the amount 
of this       
 allocation to other corners of the loop in order to restore feasibility. 
 

(iii) The value of , in general is obtained by equating to zero the minimum of the 
allocations containing     

 –(not + ) only at the corners of the closed loop. 
 

(iv)Substitute the value of and find a fresh allocation table. 
 

Step 6: Again, apply the above test for optimality till you find all dij 0 

 
Note: 

 
The maximum value of θ is determined based on two conditions. 

 

1. Supply limits and demand requirements remain satisfied. 

2. Shipments through all routes remain nonnegative. 

 

These two conditions determine the maximum value of θ and the leaving variable in the following manner.  

First, construct a closed loop that starts and ends at the entering variable cell. The loop consists of connected 
horizontal and vertical segments only (no diagonals are allowed). 

Except for the entering variable cell, each corner of the closed loop must coincide with a basic variable.  

 

Computational demonstration for optimality test 
 
Consider the initial basic feasible solution as obtained by Vogel’s approximation method [Table 
(16)]. 
 
Step 1: (i) In this table number of allocations = 3+4–1=6. 

(ii) All the positions of allocations are independent. 
 

Step 2: Determine a set of (m+n), i.e., (3+4) numbers u1, u2, u3, and v1, v2, v3, and v4. for each 
occupied cells. 

For this consider the row or column in which the allocations are maximum (here, let us 
take first row). Now, take u1 as an arbitrary constant (say zero) then by using cij = ui+vj try 
to find all ui and vj as 

 
Table 20 
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Example 2 
For the transportation problem 

Table 21 

 
the initial basic feasible solution obtained by Vogel’s approximation method is given below. 
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Table 22 

 
Test this for optimality. 

 
Solution : 

Step 1: Number of allocations = 3+4–1=6 and they are in independent positon. 
 
Step 2:  

 
Step 3: 
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Step 4: Since one dij < 0, therefore, the solution is not optimal. See step 5 and onwards for to 

find new allocations and test of optimality 
 
Step 5: (ii) 
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This improved basic feasible solution gives the cost for this solution as 
5(19)+2(10)+2(30)+7(40)+6(8)+12(20) = Rs.743. 

 
Step 6: Test this improved solution for optimality by repeating steps 1,2,3 and 4. In each step, 

following matrices are obtained: 

 
Since all dij > 0, therefore, the solution given as improved basic feasible solution is an optimal 
solution with minimum cost = Rs.743. 
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ASSIGNMENT PROBLEM 

 

Suppose we have n resources to which we want to assign to n tasks on a one-to-one basis. 

Suppose also that we know the cost of assigning a given resource to a given task. We wish to 

find an optimal assignment–one which minimizes total cost. 

 

"The best person for the job" is an apt description of the assignment model. The situation  can be 

illustrated by the assignment of workers with varying degrees of skill to jobs. A job that happens 

to match a worker's skill costs less than one in which the operator is not as skillful. The objective 

of the model is to determine the minimum-cost assignment of workers to jobs. 

 

The assignment problem refers to the class of linear programming problems that involve 

determining the most efficient assignment of 

1. people to projects 

2. salespeople to territories 

3. contracts to bidders 

4.jobs to machines, etc. 

 

Each assignment problem has associated with it a table, or matrix. Generally, the rows contain 

the objects or people we wish to assign, and the columns comprise the tasks or things we want 

them assigned to. The numbers in the table are the costs associated with each particular 

assignment. 

 

An assignment problem can be viewed as a transportation problem in which 

1. the capacity from each source (or person to be assigned) is 1 and 

2. the demand at each destination (or job to be done) is 1. 

 
Mathematical form of assignment problem 
 

The general assignment model with n workers and n jobs is represented in Table 23 

Table 23 
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The element Cij represents the cost of assigning worker i to job j (i, j = 1, 2, ... , n). There is no 

loss of generality in assuming that the number of workers always equals the number of jobs, 

because we can always add fictitious workers or fictitious jobs to satisfy this assumption. 

 

The assignment model is actually a special case of the transportation model in which the workers 

represent the sources, and the jobs represent the destinations. The supply (demand) amount at 

each source (destination) exactly equals 1. The cost of "transporting" worker i to job j is Cij' In 

effect, the assignment model can be solved directly as a regular transportation model. 

Nevertheless, the fact that all the supply and demand amounts equal 1 has led to the development 

of a simple solution algorithm called the Hungarian method. Although the new solution method 

appears totally unrelated to the transportation model, the algorithm is actually rooted in the 

simplex method, just as the transportation model is. 

 

The Mathematical Model: 

 

Let ci,j be the cost of assigning the ith resource to the jth task. We define the cost matrix to be 

the n × n matrix 

 
An assignment is a set of n entry positions in the cost matrix, no two of which lie in the same 

row or column. 

The sum of the n entries of an assignment is its cost. An assignment with the smallest possible 

cost is called an 

optimal assignment. 

 

The Hungarian Method 

The Hungarian method is an algorithm which finds an optimal assignment for a given cost 

matrix. 

 

The Hungarian method of assignment provides us with an efficient means of finding the optimal 

solution without having to make a direct comparison of every assignment option. It operates on a 

principle of matrix reduction, which means that by subtracting and adding appropriate numbers 

in the cost table or matrix, we can 

reduce the problem to a matrix of opportunity costs. Opportunity costs show the relative 

penalties associated with assigning any person to a project as opposed to making the best or 

least-cost assignment. We would like to make assignments such that the opportunity cost for 

each assignment is zero. 
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Theorem: If a number is added to or subtracted from all of the entries of any one row or column 

of a cost matrix, then on optimal assignment for the resulting cost matrix is also an optimal 

assignment for the original cost matrix. 

The Hungarian Method: The following algorithm applies the above theorem to a given n × n 

cost matrix to find an optimal assignment. 

Step 1. Subtract the smallest entry in each row from all the entries of its row. 

Step 2. Subtract the smallest entry in each column from all the entries of its column. 

Step 3. Draw lines through appropriate rows and columns so that all the zero entries of the cost 

matrix are covered and the minimum number of such lines is used. 

Step 4. Test for Optimality:  

(i) If the minimum number of covering lines is n, an optimal assignment of zeros is 

possible and we are   

 finished.  

 

(ii) If the minimum number of covering lines is less than n, an optimal assignment of 

zeros is not yet  

possible. In that case, proceed to Step 5.  

Step 5. Determine the smallest entry not covered by any line. Subtract this entry from each 

uncovered row, and  

 then add it to each covered column. Return to Step 3. 

 

Example 1: You work as a sales manager for a toy manufacturer, and you currently have three 

salespeople on 

the road meeting buyers. Your salespeople are in Austin, TX; Boston, MA; and Chicago, IL. You 

want them to fly to three other cities: Denver, CO; Edmonton, Alberta; and Fargo, ND. The table 

below shows the cost of airplane tickets in dollars between these cities. 

 
Where should you send each of your salespeople in order to minimize airfare? 
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Example 2: A construction company has four large bulldozers located at four different garages. 

The bulldozers 

are to be moved to four different construction sites. The distances in miles between the 

bulldozers and the 

construction sites are given below. 

 
How should the bulldozers be moved to the construction sites in order to minimize the total 

distance traveled? 
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Module V 

Network Analysis By Linear Programming And Shortest Route, Maximal 

Flow Problem. 

 
5.1 Network Models 

The network models in this chapter include the traditional applications of finding the most 

efficient way to link a number of locations directly or indirectly, finding the shortest route 

between two cities, determining the maximum flow in a pipeline network, determining the 

minimum-cost flow in a network that satisfies supply and demand requirements at different 

locations, and scheduling the activities of a project. 

The minimum-cost capacitated algorithm is a generalized network that subsumes the shortest-

route and the maximal-flow models 

5.1.1 SCOPE NETWORK MODELS 

A multitude of operations research situations can be modeled and solved as networks (nodes 

connected by branches): 

1. Design of an offshore natural-gas pipeline network connecting well heads in the Gulf of 

Mexico to an inshore delivery point. The objective of the model is to minimize the cost of 

constructing the pipeline. 

2. Determination of the shortest route between two cities in an existing network of roads. 

3. Determination of the maximum capacity (in tons per year) of a coal slurry pipeline network 

joining coal mines in Wyoming with power plants in Houston. (Slurry pipelines transport coal by 

pumping water through specially designed pipes.) 

4. Determination of the time schedule (start and completion dates) for the activities of a 

construction project. 

5. Determination of the minimum-cost flow schedule from oil fields to refineries through a 

pipeline network. 

 

5.1.2 Network Definitions. 

A network consists of a set of nodes linked by arcs (or branches). The notation for describing a 

network is (N, A), where N is the set of nodes and A is the set of arcs. As an illustration, the 

network in Figure 5.1 is described as 

 

 
Figure 5.1 Example of (N,A) Network 
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Associated with each network is a flow (e.g., oil products flow in a pipeline and automobile 

traffic flows in highways). In general, the flow in a network is limited by the capacity of its arcs, 

which may be finite or infinite. 

 

 

 

An arc is said to be directed or oriented if it allows positive flow in one direction and zero flow 

in the opposite direction. A directed network has all directed arcs. 

A path is a sequence of distinct arcs that join two nodes through other nodes regardless of the 

direction of flow in each arc. A path forms a cycle or a loop if it connects a node to itself through 

other nodes. For example, in Figure 5.1, the arcs (2,3), (3, 4), and (4,2) form a cycle. 

A connected network is such that every two distinct nodes are linked by at least one path. The 

network in Figure 5.1 demonstrates this type of network. 

5.2 SHORTEST-ROUTE PROBLEM 

The shortest-route problem determines the shortest route between a source and destination in a 

transportation network. 

 

5.2.1 Shortest-Route Algorithms 

Two algorithms for solving both cyclic (i.e., containing loops) and acyclic networks: 

1. Dijkstra's algorithm 

2. Floyd's algorithm 

Dijkstra's algorithm is designed to determine the shortest routes between the source node and 

every other node in the network. Floyd's algorithm is more general because it allows the 

determination of the shortest route between any two nodes in the network. 

 

5.2.1.1 Dijkstra's algorithm 

Let Ui be the shortest distance from source node 1 to node i, and define dij (≥O) as the length of 

arc (i, j). Then the algorithm defines the label for an immediately succeeding node j as 

 

[Uj, i] = [Ui + dij, i], dij ≥ 0 

The label for the starting node is (0, -], indicating that the node has no predecessor. 

Node labels in Dijkstra's algorithm are of two types: temporary and permanent. A temporary 

label is modified if a shorter route to a node can be found. If no better route can be found, the 

status of the temporary label is changed to permanent. 

Step o. Label the source node (node 1) with the permanent label [0, -]. Set i = l. 

Step i. (a) Compute the temporary labels [Ui + dij , i] for each node j that can be reached from 

node i, provided j  

      is not permanently labeled. If node j is already labeled with [Uj, k] through another 

node k and if  

                 Ui + dij < Uj, replace [Uj, k] with [Ui + dij , i]. 

(b) If all the nodes have permanent labels, stop. Otherwise, select the label [ur, s] having 

the shortest             

      distance (= ur ) among all the temporary labels (break ties arbitrarily). Set i = r and 

repeat step i. 

Example: 
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Figure 5.2  

The network in Figure 5.2 gives the permissible routes and their lengths in miles between city 1 

(node 1) and four other cities (nodes 2 to 5). Determine the shortest routes between city 1 and 

each of the remaining four cities. 

Iteration O: Assign the permanent label [0, -] to node 1. 

Iteration 1. Nodes 2 and 3 can be reached from (the last permanently labeled) node 1. Thus, the 

list of labeled nodes (temporary and permanent) becomes 

Node    Label     Status 

1    [0,-]    Permanent 

2    [0 + 100,1] = [100,1]  Temporary 

3                         [0+30,1]=[30,1]             Temporary 

For the two temporary labels [100, 1] and [30, 1], node 3 yields the smaller distance (u3 = 30). 

Thus, the status of node 3 is changed to permanent. 

Iteration 2. Nodes 4 and 5 can be reached from node 3, and the list of labeled nodes becomes 

Node   Label     Status 

1   [0, -]     Permanent 

2   [lOO, 1]    Temporary 

3   [30,1]    Permanent 

4   [30+10,3]=[40,3]   Temporary 

5            [30 + 60,3J = [90,3]   Temporary 

The status of the temporary label [40,3] at node 4 is changed to permanent (U4 = 40). 

Iteration 3. Nodes 2 and 5 can be reached from node 4. Thus, the list of labeled nodes is updated 

as 

Node  Label      Status 

1   [O, -]      Permanent 

2   [40+15, 4]=[55,4]    Temporary 

3   [30, 1]      Permanent 

4   [40,3]      Permanent 

5   [90,3] or [40 + 50,4J = [90,4]  Temporary 

Node 2's temporary label [100, 1] obtained in iteration 1 is changed to [55,4) in iteration 3 to 

indicate that a shorter route has been found through node 4. Also, in iteration 3, node 5 has two 

alternative labels with the same distance U5 = 90. 

The list for iteration 3 shows that the label for node 2 is now permanent. 

Iteration 4. Only node 3 can be reached from node 2. However, node 3 has a permanent label 

and cannot be relabeled. The new list of labels remains the same as in iteration 3 except that the 

label at node 2 is now permanent. This leaves node 5 as the only temporary label Because node 5 

does not lead to other nodes, its status is converted to permanent, and the process ends. 
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The shortest route between nodes 1 and any other node in the network is determined by starting 

at the desired destination node and backtracking through the nodes using the information given 

by the permanent labels.  

For example, shortest route from node 1 to node 2: (2) → [55, 4] → (4) → [40, 3] → (3) → 

[30,1] → (1) 

Thus, the desired route is 1 → 3 → 4 → 2 with a total length of 55 miles. 

 

5.2.1.2 Floyd's algorithm 

Floyd's algorithm is more general than Dijkstra's because it determines the shortest route 

between any two nodes in the network. The algorithm represents an n-node network as a square 

matrix with n rows and n columns. Entry (i,j) of the matrix gives the distance dij from node i to 

node j, which is finite if i is linked directly to j, and infinite otherwise. 

The idea of Floyd's algorithm is: 

Given three nodes i, j, and k in Figure:1 with the connecting distances shown on the three arcs, it 

is shorter to reach j from i passing through k if 

 

In this case, it is optimal to replace the direct route from i →j with the indirect route i →k → j. 

This triple operation exchange is applied systematically to the network using the following steps: 

Step 0. Define the starting distance matrix Do and node sequence matrix So as given below. The 

diagonal elements are marked with (-) to indicate that they are blocked. Set k = 1. 
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General step k. Define row k and column k as pivot row and pivot column. Apply the triple 

operation to each element dij in Dk - l , for all i and j. If the condition 

dik + dkj < dij , (i ≠k, j≠k, and i≠j) 

is satisfied, make the following hanges: 

(a) Create Dk by replacing dij in Dk - 1 with djk + dkj 

      (b) Create Sk by replacing Sij in Sk-l with k. Set k = k + 1. If k = n + 1, stop; else repeat step 

k. 

Example 

For the network in Figure 5.3 , find the shortest routes between every two nodes. The distances 

(in miles) are given on the arcs. Arc (3,5) is directional, so that no traffic is allowed from node 5 

to node 3. All the other arcs allow two-way traffic. 
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Figure 5.3 

Iteration O. The matrices Do and So give the initial representation of the network. Do is 

symmetrical, except that d53 = α because no traffic is allowed from node 5 to node 3. 

 
Iteration 1.Set k = 1. The pivot row and column are shown by the lightly shaded first row and 

first column in the Do-matrix. The darker cells, d13 and d32, are the only ones that can be 

improved by the triple operation. Thus, D1 and SI are obtained from Do and So in the following 

manner: 

1. Replace d23 with d21 + d13 = 3 + 10 = 13 and set S23 = 1. 

2. Replace d32 with d31 + d12 = 10 + 3 = 13 and set S32 = 1. 
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Iteration 2. Set k = 2, as shown by the lightly shaded row and column in D1.The triple operation 

is applied to the darker cells in D1 and S1. The resulting changes are shown in bold in D2 and 

S2. 

 
Iteration 3. Set k = 3, as shown by the shaded row and column in Dz. The new matrices are 

given by D3 and S3 

 
Iteration 4. Set k = 4, as shown by the shaded row and column in D3. The new matrices are given 

by D4 and 54. 
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Iteration 5. Set k = 5, as shown by the shaded row and column in D4. No further improvements 

are possible in this iteration. 

The shortest distance from node 1 to node 5 is dl5 = 12 miles. 

To determine the associated route, recall that a segment (i, j) represents a direct link only if Sij = 

j. Otherwise, i and j are linked through at least one other intermediate node. Because s15 = 4 ≠ 5, 

the route is initially given as 1 → 4 →  5. 

1 → 2 → 4 → 5. S12 = 2, S24 = 4, and S45 = 5, no further "dissecting" is needed. 

 

5.2.2 Linear Programming Formulation of the Shortest-Route Problem 

 

Used to find the shortest route between any two nodes in the network. It is equivalent to Floyd's 

algorithm.  

Suppose that the shortest-route network includes n nodes and that we desire to determine the 

shortest route between any two nodes s and t in the network. The LP assumes that one unit of 

flow enters the network at node s and leaves at node t. 

Define 

 
Thus, the objective function of the linear program becomes 

 
The constraints represent the conservation-of-flow equation at each node: 

 Total input flow = Total output flow 

Mathematically, this translates for node j to 
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Example: 

Figure 5.4. shows how the unit of flow enters at node 1 and leaves at node 2. Determine the 

shortest route from node 1 to node 2-that is, s = 1 and t = 2. 

 
Figure 5.4 

 

We can see from the network that the flow-conservation equation yields 

 
 

The complete LP can be expressed as 

 
Notice that column Xij has exactly one "1" entry in row i and one "-1" entry in row j, a typical 

property of a network LP. 
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This solution gives the shortest route from node 1 to node 2 as 1 → 3 →  4 →  2, and the 

associated 

distance is z = 55 (miles). 

 

5.3 MAXIMAL FLOW PROBLEM. 

 

Consider a network of pipelines that transports crude oil from oil wells to refineries. Intermediate 

booster and pumping stations are installed at appropriate design distances to move the crude in 

the network. Each pipe segment has a finite maximum discharge rate of crude flow (or 

capacity).A pipe segment may be uni- or bidirectional, depending on its design. Figure 5.5 

demonstrates a typical pipeline network. How can we determine the maximum capacity of the 

network between the wells and the refineries? 

The solution of the proposed problem requires equipping the network with a single source and a 

single sink by using unidirectional infinite capacity arcs as shown by dashed arcs in Figure 5.5. 

Given arc (i, j) with i < j, use the notation  to represent the flow capacities in the 

two directions i → j and j → i, respectively. To eliminate ambiguity, we place  on the arc 

next to node i with  placed next to node j, as shown in Figure 5.6 

 
Figure 5.5 Capacitated network connecting wells and refineries through booster stations 

 

 

Figure 5.6  

 

 

5.3.1 linear Programming Formulation of Maximal Flow Mode 
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Define Xij as the amount of flow in arc (i,j) with capacity Cij . The objective is to determine Xij 

for all i and j that will maximize the flow between start node s and terminal node t subject to 

flow restrictions (input flow = output flow) at all but nodes sand t. 

Example: 

In the maximal flow model of Figure 5.7, s = 1 and t = 5. The following table summarizes the 

associated LP with two different, but equivalent, objective functions depending on whether we 

maximize the output from start node 1 (= z1) or the input to terminal node 5(=Z2). 

 

 
Figure 5.7 

 
The optimal solution using either objective function is 

 

 
 

The associated maximum flow is Z1 = Z2 = 60. 

 

5.4 Introduction to Non-traditional optimization 

 

In order to survive in today’s dynamic and competitive market; our products are to be cost-

effective, compact in size and efficient. To ensure these requirements, one has to follow the 

principle of optimization, which is nothing but the process of identifying the best solution out of 

a large number of feasible ones. Therefore, optimization plays a vital role in decision making. 
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A physical problem can be mathematically expressed as a function of either one or more than 

one independent variables. If this function carries information of one of the above requirements, 

it may be termed as an objective function, which is to be either minimized or maximized. 

Mathematically, this optimum solution (either minimum or maximum) of the objective function 

can be obtained using the concept of derivative. The derivative of the function becomes equal to 

zero, corresponding to its optimal solution point. It is to be noted that zero-derivative of a 

function does not always guarantee an optimum solution, because sometimes a saddle point (also 

known as an inflection point) may also occur, which is neither a minimum nor maximum point. 

 

               In an optimization problem, independent variable(s) used to mathematically define the 

objective function is/are known as design or decision variable(s). A design variable may take 

either an integer or a real value. An objective function related to an optimization problem may 

contain one or more fixed parameter(s), which are known as pre-assigned parameter(s). An 

optimization problem does not make any sense, unless we specify the range(s) of the design 

variable(s), these are also known as geometric or side constraint(s). Moreover, an optimization 

problem may have functional or behavior constraint(s). The presence or absence of the functional 

constraint(s) decide whether the optimization problem is to be called either a constrained or an 

un-constrained one, respectively. An optimization problem may be either a linear or a non-linear 

one. It is known as a linear one, if both its objective function and functional constraint(s) do not 

carry any non-linear term. 

 

                It is to be noted that there may be more than one objective functions in some of the 

optimization problems, and these are popularly known as multi-objective optimization problems. 

 

5.4.1 Traditional Optimization Tools 

 

Traditional optimization tools generally start from a randomly chosen initial solution and move 

towards the optimum solution iteratively. Search direction and step length are the two important 

parameters to be decided by optimization algorithms. There exist a large number of traditional 

optimization tools, and they are broadly classified into two groups, namely direct search and 

gradient-based methods. 

 

Direct search methods include random search method, univariate method, pattern search method, 

and others. Out of these methods, random search method is the most popular one, in which the 

search direction is decided at each iteration randomly and the step length is specified by the user. 

Here, the quality of the solution is decided using the objective function value. As the gradient 

information of the objective function is not required, random search method can be used to 

handle optimization problem involving discontinuous objective function. However, its search 

speed may not be high always and consequently, may take a large number of iterations to reach 

optimal solution. 

 

There exist a few gradient-based methods, namely steepest descent method, conjugate gradient 

method, quasi-Newton method, and others. Steepest descent method is the most widely used one 

out of the above methods. In these methods, search direction is decided by the gradient of 

objective function. The rate of change of an objective function is the maximum along its gradient 
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direction, and consequently, these methods become reasonably fast. As gradient is a local 

property of an objective function, the chance of the solutions of gradient-based methods for 

getting trapped into local minima is more. The step length is either assumed to have a fixed value 

(specified by the user) or determined iteratively using the principle of optimization. 

 

5.4.2 Drawbacks of Traditional Optimization Tools 

 

Traditional optimization tools have the following drawbacks 

 

1. Final solution is dependent on the initially chosen random solution. There is no guarantee 

that the obtained solution will be a globally optimal one. 

2. Optimization problems involving discontinuous objective functions cannot be tackled 

using the gradient-based methods. Moreover, the solutions of gradient-based methods 

may get stuck at local optimum points. 

3. There exist a variety of optimization problems. A particular traditional optimization 

method may be suitable for solving only one type of problems. Thus, there is no versatile 

optimization method, which can be used to solve a variety of problems. 

 

5.4.3 Non-Traditional Optimization Tools 

 

We, human beings, have a natural tendency to follow the way the nature has solved complex 

optimization problems, whenever we fail to solve them using traditional optimization methods. 

Some natural processes, such as biological, physical processes etc. are modeled artificially to 

develop optimization tools for solving the problems. 

 

Non-Traditional methods include 

1. Genetic algorithms (GA) ,  

2. Genetic programming (GP) ,  

3. Evolution strategies (ES) ,  

4. Simulated annealing (SA) ,  

5. Ant colony optimization (ACO) ,  

6. Differential evolution (DE) ,  

7. Cultural algorithm (CA) ,  

8. Particle swarm optimization (PSO) ,  

9. Evolutionary programming (EP) ,  

10. Tabu search , and others. 

 

5.5 COMPUTATIONAL COMPLEXITY 

 

The time at which an algorithm produces a successful output is known as time complexity. 

Problems those can be solvable by a computer is of polynomial time algorithms. The following 

table shows some polynomial time and exponential time algorithms. 

 

 

 

 

POLYNOMIAL TIME EXPONENTIAL TIME

Linear Search-n 0/1 knapsack-2
n

Binary Search-log n Travelling Sales Person-2
n

InsertionSort-n
2

Sum of subsets-2
n

Mergesort-n log n Graph coloring-2
n

Matrix multiplication-n
3

Hamiltonian cycle-2
n
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NP-Hard 

Problems those have no polynomial time algorithms to solve are NP-Hard. 

Nondeterministic Algorithms 

NP-Hard problems can be solved in polynomial time by assuming some part of the algorithms as 

Nondeterministic polynomial time(can find solution with one unit of time in the future), such 

problems are known as NP-Complete problems. 

• Nondeterministic 

Algorithm Nsearch(A,n,key) 

{ 

  j=choice();  →1 unit of time 

  if (key=A[j]) 

   { 

     write(j); 

     success();   →1 unit of time 

    } 

   write(0); 

   Failure();    →1 unit of time 

} 

P ᴄ NP(Polynomial time less than or equal Nondeterministic Polynomaial) 

Currently those problems are in P were in NP some time before. So those NP problems can be in 

P in the future. When all the NP problems changed to solvable that is in P, P = NP so P ᴄ NP. 
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Reduction 

If  we know the solution status of one algorithm then we can convert other problems to the 

known by using the reduction method. The problem for which we know the solution status is 

known as the base problem. CNF satisfiability problem is considered as the base problem. 

CNF: 

Xi={x1,x2,x3} 

CNF= (x1Vx2V x3) ᴧ (x1Vx2V x3) 

If base problem is NP-Hard then the reduced problem is also NP-Hard 

One problem can be converted to another in polynomial time 

 

If an NP-Hard problem has Non-deterministic solution the that is NP-Complete 

CNF satisfiability problem is NP-Hard, NP, NP-complete. 
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Why using approximation? 

We are not able to solve NP-complete problems efficiently, that is, there is no known way to 

solve them in polynomial time unless P = NP. 

Why not looking for an approximate solution? 

Optimization Problem, O = (I , SOL, m, type) 

I the instance set  

SOL(i) the set of feasible solutions for instance i (SOL(i) for i ϵ I ) 

m(i, s) the meassure of solution s with respect to instance i (positive integer for i ϵ I ) and   s ϵ 

SOL(i) 

type ϵ {min, max} 

 

Example for Optimization Problem 

Given is a knapsack with capacity C and a set of items S = {1, 2, . . . , n}, where item i has 

weight wi and value vi . 

Problem 
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Instance 

 

 

5.6 TABU SEARCH 
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The word tabu (or taboo) comes from Tongan, a language of Polynesia, where it was used by the 

aborigines of Tonga island to indicate things that cannot be touched because they are sacred. 

“a meta-heuristic superimposed on another heuristic”.  By Glover (1986) 
 
The tabu search begins by marching to a local minima. To avoid retracing the steps used, the method 
records recent moves in one or more tabu lists. The original intent of the list was not to prevent a 
previous move from being repeated, but rather to insure it was not reversed. 
 
The tabu lists are historical in nature and form the tabu search memory. The role of the memory can 
change as the algorithm proceeds. At initialization the goal is make a coarse examination of the solution 
space, known as 
“diversification”, but as candidate locations are identified the search is more focused to produce local 
optimal solutions in a process of “intensification”. In many cases the differences between the various 
implementations of the tabu 
method have to do with the size, variability, and adaptability of the tabu memory to a particular 
problem domain. 
 

5.6.1 Basics A heuristic search method 

Tabu restricts some search of neighboring solutions. Aspiration allows exception of the tabu. 

Accessible Solutions – The solutions that are not in the tabu list, or in the tabu list but satisfy 

aspiration conditions of  Tabu  

Search. 

 

 



CSE DEPARTMENT, NCERC PAMPADY Page 124 
 

5.6.2 The Basic TS Algorithm 

 

5.6.3 Main Features 

 

The tabu search begins by marching to a local minima. To avoid retracing the steps used, the 

method records recent moves in one or more tabu lists.  
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The original intent of the list was not to prevent a previous move from being repeated, but rather 

to insure it was not reversed. 

5.6.4 Tabu Search 

1. Tabu search is a local search strategy with a flexible memory structure. 

2. Adaptive memory 

3. Responsive exploration strategies 

Always move to the best available neighborhood solution point, even if it is worse than the 

current solution point. 

4. Tabu list: 

Maintain a list of solution points that must be avoided (not allowed) or a list of move attributes 

that are not allowed. This is referred to as the tabu list. 

Update this list based on some memory structure (short-term memory). 

5. Aspiration Criteria 

Allow for exceptions from the tabu list, if such moves lead to promising solutions.  

6. Intensification and diversification 

Diversification: Search the unexplored area of the solution space by Increase tabu tenure, Change 

tabu restriction, etc 

7. Long Term Memory  

Frequency based memory/Recency based memory. Adaptive Memory Programming (AMP) 

 

First Level Tabu Search 

 

In a first level tabu search approach, the following issues should be considered: 

1. Solution representation and evaluation 

2. Neighborhood structure/Move mechanism 

3. Move Attribute (used for tabu classification) 

4. Tabu status and duration (tenure) 

5. Aspiration criteria 

6. Stopping criteria 

7. Initial Solution 

 

Tabu Tenure 

How to decide tabu duration (tenure)? 

1. Effective tabu tenure depends on the instance (size, etc.) 

2. An effective range for tabu tenure can be determined experimentally  

3. Static versus Dynamic tabu tenure 

 

Aspiration Criteria 

Choices for aspiration criteria 

1. Better than the best found so far 

2. Aspiration-by-default 

Once a first level tabu search algorithm is designed and implemented, we can incorporate other 

features to enhance the algorithm. 
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TABU SEARCH SHORT-TERM MEMORY COMPONENT. 

 

Memory Aspects 

1.recency (short term)  

how recently was I here?  

2.frequency (long term) 

 how often have I been here? 

 3.quality (aspiration)  

how good is being here?  

4.influence (aspiration)  

how far away am I from where I have just been? 

 

 

 
Figure 5.1 Tabu search short-term memory component. 
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Example: 

Tabu Search for TSP  

 

Tabu Search is a heuristic that, if used effectively, can promise an efficient near-optimal solution 

to the TSP. 

 

1. Solution Representation  

A feasible solution is represented as a sequence of nodes, each node appearing only once and in 

the order it is visited. The first and  the last visited nodes are fixed to 1. The starting node is not 

specified in the solution representation and is always understood to be node 1.  

 
 

2. Initial Solution: A good feasible, yet not-optimal, solution to the TSP can be found quickly 

using a greedy approach. Starting with the first node in the tour, find the nearest node. Each time 

find the nearest unvisited node from the current node until all the nodes are visited.  

3. Neighborhood: A neighborhood to a given solution is defined as any other solution that is 

obtained by a pair wise exchange of any two nodes in the solution. This always guarantees that 

any neighborhood to a feasible solution is always a feasible solution (i.e, does not form any sub-

tour).  

At each iteration, the neighborhood with the best objective value (minimum distance) is selected.  

4.  

 
5. Tabu List: To prevent the process from cycling in a small set of solutions, some attribute of 

recently visited solutions is stored in a Tabu List, which prevents their occurrence for a limited 

period. For our problem, the attribute used is a pair of nodes that have been exchanged recently. 

A Tabu structure stores the number of  iterations for which a given pair of nodes is prohibited 

from exchange as illustrated in Figure 3. 
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6. Aspiration criterion: Tabus may sometimes be too powerful: they may prohibit attractive 

moves, even when there is no danger of cycling, or they may lead to an overall stagnation of the 

searching process . It may, therefore, become necessary to revoke tabus at times. The criterion 

used for this to happen in the present problem of TSP is to allow a move, even if it is tabu, if it 

results in a solution with an objective value better than that of the current best-known solution. 

 

7. Diversification: Quite often, the process may get trapped in a space of local optimum. To 

allow the process to search other parts of the solution space (to look for the global optimum), it is 

required to diversify the search process, driving it into new regions. This is implemented in the 

current problem using “frequency based memory”.  

 

8. Termination criteria: The algorithm terminates if a pre-specified number of iterations is 

reached 
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Module VI 

6.1 GENETIC ALGORITHMS 

1. Genetic algorithms are based on the principles of natural genetics and natural selection. 

2. The basic elements of natural genetics used in the genetic search procedure are 

a) reproduction,  

    b) crossover, and  

     c) mutation 

 

Outline of the Basic Genetic Algorithm 

1. [Start] Generate random population of n chromosomes (suitable solutions for the 

problem) 

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population 

3. [New population] Create a new population by repeating following steps until the new 

population is complete 

A. [Selection] Select two parent chromosomes from a population according to their 

fitness (the better fitness, the bigger chance to be selected) 

B. [Crossover] With a crossover probability cross over the parents to form new 

offspring (children). If no crossover was performed, offspring is the exact copy of 

parents. 

C. [Mutation] With a mutation probability mutate new offspring at each locus 

(position in chromosome). 

D. [Accepting] Place new offspring in the new population 

4. [Replace] Use new generated population for a further run of the algorithm 

5. [Test] If the end condition is satisfied, stop, and return the best solution in current 

population 

6. [Loop] Go to step 2 

Difference between Gas and traditional method of optimization 

1. A population of points (trial design vectors) is used for starting the procedure instead of a 

single design point. 

     i) n design variables 

     ii) size of the population- 2n to 4n 

  Since several points are used as candidate solutions, GAs are less likely to get trapped at a local 

optimum. 
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2. GAs use only the values of the objective function. The derivatives are not used in the search 

procedure. 

3. In GAs the design variables are represented as strings of binary variables that correspond to 

the chromosomes in natural genetics. 

i) Search method - solving discrete and integer programming problems. 

ii) continuous design variables, the string length can be varied to achieve any desired resolution. 

 

4. The objective function value corresponding to a design vector plays the role of fitness in 

natural genetics. 

5. In every new generation, a new set of strings is produced by using randomized parents 

selection and crossover from the old generation. 

 

Limitations of Gas 

1. GAs are not suited for all problems, especially problems which are simple and for which 

derivative information is available. 

2. Fitness value is calculated repeatedly which might be computationally expensive for some 

problems. 

3. Being stochastic, there are no guarantees on the optimality or the quality of the solution. 

4. If not implemented properly, the GA may not converge to the optimal solution. 

 

6.1.1 Basic concepts 

1. Population − It is a subset of all the possible (encoded) solutions to the given problem. 

2. Chromosomes − A chromosome is one such solution to the given problem. 

3. Gene − A gene is one element position of a chromosome. 

4. Allele − It is the value a gene takes for a particular chromosome. 

 
Figure 1 Basic concepts 
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5. Genotype − Genotype is the population in the computation space. In the computation space, 

the solutions are represented in a way which can be easily understood and manipulated using a 

computing system. 

6. Phenotype − Phenotype is the population in the actual real world solution space in which 

solutions are represented in a way they are represented in real world situations. 

7. Decoding and Encoding − For simple problems, the phenotype and genotype spaces are the 

same. However, in most of the cases, the phenotype and genotype spaces are different. Decoding 

is a process of transforming a solution from the genotype to the phenotype space, while encoding 

is a process of transforming from the phenotype to genotype space. Decoding should be fast as it 

is carried out repeatedly in a GA during the fitness value calculation. 

 

 

 
Figure 2 Basic Structure 

 

 

6.1.2 Encoding (Representation of Design Variables) 

 

Each chromosome is represented by a binary string. Each bit in the string can represent some 

characteristics of the solution. There are many other ways of encoding. The encoding depends 

mainly on the solved problem.  

For example, one can encode directly integer or real numbers, sometimes it is useful to encode 

some permutations and so on. 
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1. Binary Representation 

 
 

2. Real Valued Representation 

 
3. Integer Representation 

 
4. Permutation Representation 

 
 

A chromosome should in some way contain information about solution that it represents. The 

most used way of encoding is a binary string. A chromosome then could look like this: 

 

Chromosome 1 1101100100110110 

Chromosome 2 1101111000011110 

 

Population Models 

There are two population models widely in use - 

1. Steady State 

In steady state GA, we generate one or two off-springs in each iteration and they replace one or 

two individuals from the population. A steady state GA is also known as Incremental GA. 

2. Generational 

In a generational model, we generate ‘n’ off-springs, where n is the population size, and the 

entire population is replaced by the new one at the end of the iteration. 

6.1.3 Selection 

Fitness Proportionate Selection is one of the most popular ways of parent selection. Every 

individual can become a parent with a probability which is proportional to its fitness. Fitter 

individuals have a higher chance of mating and propagating their features to the next generation.  

 

1. Roulette Wheel Selection 

In a roulette wheel selection, the circular wheel is divided as described before. A fixed point is 

chosen on the wheel circumference as shown and the wheel is rotated. The region of the wheel 
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which comes in front of the fixed point is chosen as the parent. For the second parent, the same 

process is repeated. 

 

 

It is clear that a fitter individual has a greater pie on the wheel and therefore a greater chance of 

landing in front of the fixed point when the wheel is rotated. Therefore, the probability of 

choosing an individual depends directly on its fitness. 

 
 

2. Stochastic Universal Sampling (SUS) 

Stochastic Universal Sampling is quite similar to Roulette wheel selection, however instead of 

having just one fixed point, we have multiple fixed points as shown in the following image. 

Therefore, all the parents are chosen in just one spin of the wheel. Also, such a setup encourages 

the highly fit individuals to be chosen at least once. 
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3. Tournament Selection 

In K-Way tournament selection, we select K individuals from the population at random and 

select the best out of these to become a parent. The same process is repeated for selecting the 

next parent.  

Tournament Selection is also extremely popular in literature as it can even work with negative 

fitness values. 
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4. Rank Selection 

Rank Selection also works with negative fitness values and is mostly used when the individuals 

in the population have very close fitness values (this happens usually at the end of the run). This 

leads to each individual having an almost equal share of the pie (like in case of fitness 

proportionate selection) as shown in the following image and hence each individual no matter 

how fit relative to each other has an approximately same probability of getting selected as a 

parent. This in turn leads to a loss in the selection pressure towards fitter individuals, making the 

GA to make poor parent selections in such situations. 
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5. Random Selection 

In this strategy we randomly select parents from the existing population. There is no selection 

pressure towards fitter individuals and therefore this strategy is usually avoided. 

6.1.4 Crossover 

Crossover operates on selected genes from parent chromosomes and creates new offspring. The 

simplest way how to do that is to choose randomly some crossover point and copy everything 

before this point from the first parent and then copy everything after the crossover point from the 

other parent. 

Crossover can be illustrated as follows: ( | is the crossover point): 

Chromosome 1 11011 | 00100110110 

Chromosome 2 11011 | 11000011110 

Offspring 1 11011 | 11000011110 

Offspring 2 11011 | 00100110110 

 

1. One Point Crossover 
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In this one-point crossover, a random crossover point is selected and the tails of its two parents 

 

2. Multi Point Crossover 

Multi point crossover is a generalization of the one-point crossover wherein alternating segments 

are swapped to get new off-springs. 

 

3. Uniform Crossover 

Treat each gene separately. Flip a coin for each chromosome to decide whether or not it’ll be 

included in the off-spring. 

 

4. Whole Arithmetic Recombination 
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This is commonly used for integer representations and works by taking the weighted average of 

the two parents by using the following formulae − 

Child1 = α.x + (1-α).y Child2 = α.x + (1-α).y 

Obviously, if α = 0.5, then both the children will be identical as shown in the following image. 

 

5. Davis’ Order Crossover (OX1)  

OX1 is used for permutation based crossovers with the intention of transmitting information 

about relative ordering to the off-springs. It works as follows − 

1. Create two random crossover points in the parent and copy the segment between them from 

the first parent to the first offspring. 

2. Now, starting from the second crossover point in the second parent, copy the remaining 

unused numbers from the second parent to the first child, wrapping around the list. 

3. Repeat for the second child with the parent’s role reversed. 

 
 

6.1.5 Mutation 

1. After a crossover is performed, mutation takes place. 

2. Mutation is intended to prevent falling of all solutions in the population into a local optimum 

of the solved problem.  

3. Mutation operation randomly changes the offspring resulted from crossover.  

4. In case of binary encoding we can switch a few randomly chosen bits from 1 to 0 or from 0 to 

1 
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Original offspring 1 1101111000011110 

Original offspring 2 1101100100110110 

Mutated offspring 1 1100111000011110 

Mutated offspring 2 1101101100110110 

 

Mutation Operators 

1. Bit Flip Mutation  

In this bit flip mutation, we select one or more random bits and flip them. This is used for binary 

encoded GAs. 

 

2. Random Resetting 

Random Resetting is an extension of the bit flip for the integer representation. In this, a random 

value from the set of permissible values is assigned to a randomly chosen gene. 

3. Swap Mutation 

 In swap mutation, we select two positions on the chromosome at random, and interchange the 

values. This is common in permutation based encodings. 

 

4. Scramble Mutation 

Scramble mutation is also popular with permutation representations. In this, from the 

entire chromosome, a subset of genes is chosen and their values are scrambled or shuffled 

randomly. 
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5. Inversion Mutation 

In inversion mutation, we select a subset of genes like in scramble mutation, but instead of 

shuffling the subset, we merely invert the entire string in the subset. 

 

 

6.2 SIMULATED ANNEALING 

Simulated Annealing (SA) is a method to solve an optimization problem by simulating a 

stochastic thermal dynamics of a metal cooling process. 

Stochastic means having a random probability distribution or pattern that may be analyzed 

statistically but may not be predicted precisely. 

SA obtains an optimal solution by simulating a physical fact that liquid metal transmutes to be 

crystal (which has the smallest internal thermal energy) if it is cooled satisfactory slowly from a 

high temperature state (with large internal thermal energy). 

Transmute means to change something completely, especially into something different 

and better. 

Functional minimization corresponds to  minimization of internal thermal energy of metal in a 

melting pot. 

-The idea to solve the optimization problem by using this fact is proposed by Kirkpatric. He 

demonstrated that the method is successfully applicable to so-called combinatorial optimization 

problem. 

 

Combinatorial optimization problem- finding an optimal object from a finite set of objects. 

Examples 

1. the travelling salesman problem ("TSP") , 

2. the minimum spanning tree problem ("MST"). 

3.   physical design of computers 

 

6.2.1 ANNEALING PROCESS 

If a metal is cooled so fast, final state of a metal is amorphous (glass-like). 

If a metal is cooled very slowly, the final state of a metal is a ground state and makes crystal  

https://dictionary.cambridge.org/dictionary/english/change
https://dictionary.cambridge.org/dictionary/english/completely
https://dictionary.cambridge.org/dictionary/english/especially
https://dictionary.cambridge.org/dictionary/english/better
https://en.wikipedia.org/wiki/Finite_set
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Minimum_spanning_tree
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The process to heat up a metal and to cool it down slowly IS referred to as "annealing“, 

"quenching" or "hardening". 

 

1. When metal is heated up in a melting pot, its internal thermal energy increases, and its phase 

turn to be a liquid phase. 

State or internal energy of a metal is determined stochastically, according to the molecule's 

behavior. 

Internal energy is large when its temperature is satisfactory high. 

 

 

 

2. From this high temperature state, if temperature of a metal is cooled down slowly, its internal 

thermal energy decreases slowly although it sometimes increases ruled by the Boltzmann's 

probability, 
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3.  Since a cooling process of metal is ruled by stochastic thermal dynamics, the final state 

(positions) of molecules is determined randomly according to the behavior of the molecules or its 

cooling speed. 

 

 

6.2.2 DIGITAL SIMULATION OF ANNEALING PROCESS 

Annealing process can be simulated by a digital computer if we consider that the process is a 

behavior of a set of many discrete particles. By using this concept, Metoropolis has succeeded to 

develop an algorithm to simulate the stochastic process which can realize the thermal 

equilibrium at some constant temperature T. To develop the algorithm, he substitutes a set of 

molecule's movement by a series of a small deviation of each molecule. The process is simulated 

by a Markov chain of states determined by deviations of discrete particles. 

6.2.3 Simulated Annealing Algorithm 
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Kirkpatrik showed that Metoropolis's  algorithm can be applied to the functional optimization by 

corresponding parameters of the annealing process to parameters of the optimization problem as 

shown in Table I . 

Table 1 Relationship between thermal dynamics and functional optimization 

Thermal dynamics     Functional optimization       

 State     Solution 

 Energy     Cost or Objective function 

State transition     Neighborhood solution 

Temperature     Control parameter 

(temperature) 

Freezing point     Heuristic solution 

 

 

 



CSE DEPARTMENT, NCERC PAMPADY Page 144 
 

 



CSE DEPARTMENT, NCERC PAMPADY Page 145 
 

1. firstly, initial solution and initial temperature are selected. 

2. Secondly, a trial solution is generated in the neighborhood of the current solution.  

3. Then, a difference of the objective functions between current(t) and trial(t+l) solutions 

 
is calculated. 

4. If ∆ <0, then trial solution is accepted. If ∆ >0, then trial solution is accepted with probability  

exp( - ∆ I Tk )  

exp( - ∆ I Tk ) is known as the acceptance probability function 

5. In a real computer implementation, the solution is accepted when exp( - ∆ I Tk ) >r holds. 

Where, r is a random number in the range  0 to 1. 

6. Repeat step 2 to 5 until the thermal equilibrium of the current temperature reaches. 

7. In a real implementation, thermal equilibrium is estimated when a predetermined large number 

(several hundreds or thousands) of trial solutions are evaluated. 

When equilibrium reaches, the temperature is decreased by the following equation  

Where, p is taken as 0.80 to 0.99. 

8. Repeat steps from 2 to 7 with the new temperature until freezing point reaches.  

9. If the freezing point reaches, the algorithm stops. 

 

 

6.2.3 Cooling Schedule 

The cooling schedule severely affects the solution efficiency and the quality of the solution. In 

applying a simulated annealing algorithm to an optimization problem, it is important to decrease 

a temperature satisfactory slowly to obtain a qualified solution. 

 

1.  

 

Where, k means an iteration number of temperature decrease, and c is a constant independent to 

temperature T. 

Takes an infinitive computation burden. 

2.  

 

Where, β is a very smalI constant. In this cooling schedule, temperature decrease is so slow, but 

a trial solution in one temperature is limited to one time. 

6.3 SA IN SCHEDULING 

Scheduling problems are combinatorial problems and as such are well suited for SA applications. 

SA has been applied to single-machine, flow-shop and job-shop problems. 
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6.3.1 Single machine scheduling 

In a single machine weighted tardiness problem, the objective is to  

 

where Ti is the tardiness of job i and wi is the weight assigned to job i; there are no constraints 

for this problem. 

The temperature, Z for the k + lth iteration was computed by 

 

The initial and final Z values are set to 1.000 and 0.334, respectively. The value of β depends on 

the number of iterations (10,000 for n = 50 and 20,000 for n = 100). 

The starting job sequence is chosen at random and the neighborhood solutions are generated by 

interchanging 

two randomly selected jobs in the sequence. 

 

6.3.2 Flowshop scheduling 

In the flowshop scheduling problem, there are n jobs to be processed on m machines; all jobs 

must visit the machines in the same predetermined order 1, 2 . . . . . m.  

The objective is to find a sequence of jobs that minimizes the makespan (maximum completion 

time) under the constraint that a job can start on any machine only when that machine is 

available and the job has finished processing on the previous machine. 

The initial value of Z(temperature) is computed by  

 

where pij is the processing time for job i on machine j, m is the number of machines and n is the 

number of jobs. The final temperature for the k th iteration is 
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The neighborhoods considered (interchange or shift neighborhood) and on the search technique 

(random or ordered) used. 

In the interchange method, two randomly selected jobs in the sequence are interchanged. 

In the shift neighborhood method, two adjacent jobs are interchanged. 

6.3.3 Jobshop scheduling 

A set of jobs J and a set of machines M are given. Each job consists of a chain of operations O, 

each of which needs to be processed during an uninterrupted time period of a given length on a 

given machine. Each machine can perform at most one operation at a time. A schedule is an 

allocation of the operations to time intervals on the machines. The problem is to find the 

minimum length schedule. 

The neighborhood solutions are generated by t r a n s i t i o n s . A transition is generated, by 

choosing two successive operations on some machine k, and switching their processing order on 

the machine. The probability of accepting an increase is given by e x p ( - ( C ( j ) - C ( i ) ) / c , 

where C(i) is the cost associated with the ith configuration and c is the control parameter which 

is gradually decreased. 

6.4 SA in solving Travelling salesman problem. 

Definitions: 

State (s): a particular tour through the set of given cities or points 

Neighbor State (′): state obtained by randomly switching the order of two cities 

Cost Function (c): determines the total cost of a state 

Relative Change in Cost (δ): the relative change in cost c between s and s′ 

Cooling Constant (β): the rate at which the Temperature is lowered each time a new solution is 

found 

Acceptance Probability Function (P): determines the probability of moving to a more costly 

state 

n = number of cities or points 

T0 = Initial Temperature 

Tk = the Temperature at the kth instance of accepting a new solution state 

Tk+1 =β Tk , where β is some constant between 0 and 1 
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Stopping Conditions: for simulated annealing in TSP 

If the algorithm is stopped too soon, the approximation won’t be as close to the global optimum. 

If it isn’t stopped soon enough, wasted time and calculations are spent with little to no benefit. 

 

6.5 Application of GA in solving sequencing and scheduling problems 

 

Figure 1 shows the framework of the genetic algorithm that is employed for the job scheduling 

problem. Parent schedules with high evaluations are selected and remaining chromosomes are 

discarded by the reproduction operator. These parent schedules then generate new offspring 

chromosomes via heuristic crossover and local improvement. Finally, the evaluation process 

computes the fitness values of newly generated 

chromosomes for the reproduction in the next generation. This procedure is repeated and the 

population of schedules evolves generation by generation. 
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Algorithm 

 

Step 0 (Selection of the first gene) 

Let i=l and compare the first genes of the two parent chromosomes. Choose the one with the 

longer processing time, i.e. higher job number, as the first gene al of the child. 

 

Step 1 (Stopping, Order of Ascending/Descending) 

If  i = n+1, then stop. The crossover is complete. If i ≥ k for which ak = 1, then go to 

Step 3. Otherwise, go to Step 2. 

 

 

 
 

Step 2 (Descending Order) 

Let i = i+1. From each parent select the very next gene to ai-l of the child chromosome. If ai-l is 

the last gene of a parent, then select the first gene of the parent. Let ai be the gene determined as 

follows and go to Step 1. 

2.1) If both of the genes already exist in the new chromosome, then choose the highest gene 

which is lower than  

         ai-l. 

2.2) If one constructs a cycle and the other does not, then choose the latter as ai. 

2.3) If  neither of the genes constructs a cycle and there exist genes lower than ai-l, then choose 

the higher one among them as ai. 
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2.4) If neither of the genes constructs a cycle and neither of them is lower than ai-l, then choose 

the lower one as ai. 

Step 3 (Ascending order) 

Let i = i+1. From each parent select the very next gene to ai-l of the child chromosome. If ai-l is 

the last gene of a parent, then select the first gene of the parent. Let ai be the gene determined as 

follows and go to Step 1. 

3.1) If both of the genes construct cycles, then among the remaining genes, choose the lower 

gene which is higher than ai-l' If there are no such genes, then select the lowest as ai. 

3.2) If one constructs a cycle and the other does not, then choose the latter as ai. 

3.3) If neither of the genes constructs a cycle and there exist genes higher than ai-l, then choose 

the lower one among them as ai. 

3.4) If neither of the genes constructs a cycle and neither of them is higher than ai-l, then choose 

the lower one as ai. 

Example 1 The following example illustrates the algorithm  in generating a child chromosome. 

Chromosome 1:  9 8 4 5 6 7 1 3 2 10 

Chromosome 2:  8 6 1 2 3 10 5 9 4 7 

Child :  9 8 6 1 2 3 10 5 7 4 

The first gene of a child is determined by the first job with longer processing time of the two 

parents. Thus, job 9 is selected as the first gene. Then job 8 of chromosome 1 and job 4 of 

chromosome 2 are compared and the job with longer processing time is selected to follow job 9 

by Step 2.3. Thus, job 8 follows job 9. The procedure then continues by Step 2.3 and job 6 and 

job 1 of chromosome 2 follow. Since job 1 with the shortest processing time is selected, the 

algorithm now proceeds in ascending order. Jobs 2, 3 and 10 of chromosome 2 follow job 1 in 

the child chromosome by Step 3.3. Then by Step 3.2 Job 10 is followed by job 5 of chromosome 

2, since job 9 of chromosome 1 constructs a cycle. Job 7 is then selected to follow job 5 by Step 

3.1 since both job 6 and 9 of the two parents construct cycles. Finally, job 4 constitutes the last 

gene of the child chromosome. 

 

ALGORITHM FOR SOLVING JOB SHOP SCHEDULING PROBLEMS 

Scheduling is one of the critical issues when planning and managing manufacturing processes 

and represents a significant problem for many companies . One of the most difficult problems in 
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this area is the job shop scheduling problem (JSSP), which is well known as one of the most 

difficult NP-hard problems. 

The problem formulation 

The flexible job-shop scheduling problem can be formulated as follows: There is a set of NP 

products P = {P1, P2,…, Pi,…, PN}. To complete each of these products we need to complete 

corresponding job from a set of K jobs J = {J1, J2,…, Jj,…, JK}. Each job Jj consists of a 

predetermined sequence of operations. Each operation requires one machine M selected from a 

set of available machines M = {M1, M2,…, Mk,…, MM}. 

The aim is to optimize production by using a genetic algorithm or in other words to find a 

schedule of the operations on the machines with the shortest makespan taking into account the 

precedence statements: 

1. All machines are available at time 0  

2.  All jobs are released at time 0  

3. Every job is a chain of operations and order of operations has to be maintained  

4. All operations of a given job have to be processed in a given order.  

5. Two operations of a job cannot be processed at the same time;  

6. Each machine can process at most one operation at a time  

7. Once processing starts on a given machine, it must complete on that particular machine 

without any interruption.  

8. Each operation has a fixed duration.  

9. Each machine cannot process more than one operation at a time  

10. All machines are available at zero time and machine efficiency is 100 %  

11. There is no break time. 

1 Chromosome representation and decoding 

Chromosome representation has three components:  

Product Code Component (PCC),  

Series Size Component (SSC) and  

Machine Code Selection Component (MCSC). 
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As can be seen from example in Fig. 1 the first element in array (PCC) represents product code 

(product code value is "2"). Value of the second element (SSC) is 27 – that means that there are 

27 products in the series. Next four elements in the array are used for description of operations 

and machines (MCSC). 

2 Population initialization 

The initial population in algorithm is produced randomly. 

3 Selection and crossover 

4. Mutation 

 

Since in some operations we can use more than one machine in this type of mutation we alter 

genes that represent machines, or in other words machine for a certain operation is altered. 

Newly assigned machine must be included in the machine set of the corresponding operation. All 

individuals in the population have the same chance for mutation except the best individual which 

is protected from alteration of its genes. Machine sequence mutation is described as follows:  

1. Select one individual form population  

2. Select one product  

3. Select one operation  

4. Assign new machine for selected operation. 

 

5. Fitness evaluation 

The scheduling problem is an optimization problem where the ultimate objective is to reduce the 

total cost of production by reducing the time of production. 

6.6 Application of GA in solving Travelling salesman problem 

 

Genetic algorithm is used to solve Travelling Salesman Problem. Genetic algorithm is a 

technique used for 
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estimating computer models based on methods adapted from the field of genetics in biology. To 

use this technique, one encodes possible model behaviors into ''genes". After each generation, the 

current models are rated and allowed to mate and breed based on their fitness. In the process of 

mating, the genes are exchanged, crossovers and mutations can occur. The current population is 

discarded and its offspring forms the next 

generation. 

 

Algorithm 

 

1. Initialization: Generate N random candidate routes and calculate fitness value for each route. 

2. Repeat following steps Number of iteration times: 

a) Selection: Select two best candidate routes. 

b) Reproduction: Reproduce two routes from the best routes. 

c) Generate new population: Replace the two worst routes with the new routes. 

3. Return the best result 
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APPENDIX 1 

 

CONTENT BEYOND THE SYLLABUS 

 

1. Why do we need better optimization Algorithms? 

To train a neural network model, we must define a loss function in order to measure the 

difference between our model predictions and the label that we want to predict. What we are 

looking for is a certain set of weights, with which the neural network can make an accurate 

prediction, which automatically leads to a lower value of the loss function. 

I think you must know by now, that the mathematical method behind it is called gradient descent. 

 

Eq. 1 Gradient Descent for parameters θ with loss function L. 

In this technique (Eq.1), we must calculate the gradient of the loss function L with respect to the 

weights (or parameters θ) that we want to improve. Subsequently, the weights/parameters are 

updated in the direction of the negative direction of the gradient. 

By periodically applying the gradient descent to the weights, we will eventually arrive at 

the optimal weights that minimize the loss function and allow the neural network to make 

better predictions. 

So far the theory. 

Do not get me wrong, gradient descent is still a powerful technique. In practice, however, this 

technique may encounter certain problems during training that can slow down the learning 

process or, in the worst case, even prevent the algorithm from finding the optimal weights 

These problems were on the one hand saddle points and local minima of the loss function, where 

the loss function becomes flat and the gradient goes to zero: 



CSE DEPARTMENT, NCERC PAMPADY Page 155 
 

  

Fig. 1 Saddle Points and Local Minima 

A gradient near zero does not improve the weight parameters and prevents the entire learning 

process. 

On the other hand, even if we have gradients that are not close to zero, the values of these 

gradients calculated for different data samples from the training set may vary in value and 

direction. We say that the gradients are noisy or have a lot of variances. This leads to a zigzag 

movement towards the optimal weights and can make learning much slower: 

  

Fig. 3 Example of zig-zag movements of noisy gradients. 
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In the following article, we are going to learn about more sophisticated gradient descent 

algorithms. All of these algorithms are based on the regular gradient descent optimization that 

we have come to know so far. But we can extend this regular approach for the weight 

optimization by some mathematical tricks to build even more effective optimization algorithms 

that allow our neural network to adequately handle these problems, thereby learning faster and to 

achieve a better performance 

2. Stochastic Gradient Descent with Momentum 

The first of the sophisticated algorithms I want to present you is called stochastic gradient 

descent with momentum. 

  

Eq. 2 Equations for stochastic gradient descent with momentum. 

On the left side in Eq. 2, you can see the equation for the weight updates according to the regular 

stochastic stochastic gradient descent. The equation on the right shows the rule for the weight 

updates according to the SGD with momentum. The momentum appears as an additional term ρ 

times v that is added to the regular update rule. 

Intuitively speaking, by adding this momentum term we let our gradient to build up a kind of 

velocity v during training. The velocity is the running sum of gradients weighted by ρ. 

ρ can be considered as friction that slows down the velocity a little bit. In general, you can see 

that the velocity builds up over time. By using the momentum term saddle points and local 

minima become less dangerous for the gradient. Because step sizes towards the global minimum 

now don’t depend only on the gradient of the loss function at the current point, but also on the 

velocity that has built up over time. 

In other words, we are moving more towards the direction of velocity than towards the gradient 

at a certain point. 

If you want to have a physical representation of the stochastic gradient descent with momentum 

think about a ball that rolls down a hill and builds up velocity over time. If this ball reaches some 

obstacles on its way, such as a hole or a flat ground with no downward slope, the velocity v 
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would give the ball enough power to roll over these obstacles. In this case, the flat ground and 

the hole represent saddle points or local minima of a loss function. 

In the following video (Fig. 4), I want to show you a direct comparison of regular stochastic 

gradient descent and stochastic gradient descent with momentum term. Both algorithms are 

trying to reach the global minimum of the loss function which lives in a 3D space. Please note 

how the momentum term makes the gradients to have less variance and fewer zig-zags 

movements. 

  

  

Fig. 4 SGD vs. SGD with Momentum 

In general, the momentum term makes converges towards optimal weights more stable and 

faster. 

3. AdaGrad 

Another optimization strategy is called AdaGrad. The idea is that you keep the running sum of 

squared gradients during optimization. In this case, we have no momentum term, but an 

expression g that is the sum of the squared gradients. 
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Eq. 3 Parameter update rule for AdaGrad. 

When we update a weight parameter, we divide the current gradient by the root of that term g. To 

explain the intuition behind AdaGrad, imagine a loss function in a two-dimensional space in 

which the gradient of the loss function in one direction is very small and very high in the other 

direction. 

Summing up the gradients along the axis where the gradients are small causes the squared sum of 

these gradients to become even smaller. If during the update step, we divide the current gradient 

by a very small sum of squared gradients g, the result of that division becomes very high and 

vice versa for the other axis with high gradient values. 

As a result, we force the algorithm to make updates in any direction with the same proportions. 

This means that we accelerate the update process along the axis with small gradients by 

increasing the gradient along that axis. On the other hand, the updates along the axis with the 

large gradient slow down a bit. 

However, there is a problem with this optimization algorithm. Imagine what would happen to the 

sum of the squared gradients when training takes a long time. Over time, this term would get 

bigger. If the current gradient is divided by this large number, the update step for the weights 

becomes very small. It is as if we were using very low learning that becomes even lower the 

longer the training goes. In the worst case, we would get stuck with AdaGrad and the training 

would go on forever. 

 

4. RMSProp 

There is a slight variation of AdaGrad called RMSProp that addresses the problem that AdaGrad 

has. With RMSProp we still keep the running sum of squared gradients but instead of letting that 

sum grow continuously over the period of training we let that sum actually decay. 
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Eq. 4 Update rule for RMS Prop. 

In RMSProp we multiply the sum of squared gradients by a decay rate α and add the current 

gradient weighted by (1- α). The update step in the case of RMSProp looks exactly the same as 

in AdaGrad where we divide the current gradient by the sum of squared gradients to have this 

nice property of accelerating the movement along the one dimension and slowing down the 

movement along the other dimension. 

Let’s see how RMSProp is doing in comparison with SGD and SGD with momentum in finding 

the optimal weights. 

 

   

Fig. 5 SGD vs. SGD with Momentum vs. RMS Prop 
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Although SGD with momentum is able to find the global minimum faster, this algorithm takes a 

much longer path, that could be dangerous. Because a longer path means more possible saddle 

points and local minima. RMSProp, on the other hand, goes straight towards the global minimum 

of the loss function without taking a detour. 

5. Adam Optimizer 

So far we have used the moment term to build up the velocity of the gradient to update the 

weight parameter towards the direction of that velocity. In the case of AdaGrad and RMSProp, 

we used the sum of the squared gradients to scale the current gradient, so we could do weight 

updates with the same ratio in each dimension. 

These two methods seemed pretty good ideas. Why do not we just take the best of both worlds 

and combine these ideas into a single algorithm? 

This is the exact concept behind the final optimization algorithm called Adam, which I would 

like to introduce to you. 

The main part of the algorithm consists of the following three equations. These equations may 

seem overwhelming at first, but if you look closely, you’ll see some familiarity with previous 

optimization algorithms. 

  

Eq. 5 Parameter update rule for Adam Optimizer 

The first equation looks a bit like the SGD with momentum. In the case, the term would be the 

velocity and the friction term. In the case of Adam, we call the first momentum and is just a 

hyperparameter. 

The difference to SGD with momentum, however, is the factor (1- β1), which is multiplied with 

the current gradient. 
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The second part of the equations, on the other hand, can be regarded as RMSProp, in which we 

are keeping the running sum of squared gradients. Also, in this case, there is the factor (1-β2) 

which is multiplied with the squared gradient. 

The term in the equation is called the second momentum and is also just a hyperparameter. The 

final update equation can be seen as a combination of RMSProp and SGD with Momentum. 

So far, Adam has integrated the nice features of the two previous optimization algorithms, but 

here’s a little problem, and that’s the question of what happens in the beginning. 

At the very first time step, the first and second momentum terms are initialized to zero. After the 

first update of the second momentum, this term is still very close to zero. When we update the 

weight parameters in the last equation, we divide by a very small second momentum term v, 

resulting in a very large first update step. 

This first very large update step is not the result of the geometry of the problem, but it is an 

artifact of the fact that we have initialized the first and second momentum to zero. To solve the 

problems of large first update steps, Adam includes a correction clause: 

 

 

Eq. 6 Bias Correction for Adam Optimizer 

You can see that after the first update of the first and second momentum and we make an 

unbiased estimate of these momentums by taking into account the current time step. These 

correction terms make the values of the first and second momentum to be higher in the beginning 

than in the case without the bias correction. 
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As a result, the first update step of the neural network parameters does not get that large and we 

don’t mess up our training in the beginning. The additional bias corrections give us the full form 

of Adam Optimizer. 

Now, let us compare all algorithms with each other in terms of finding the global minimum of 

the loss function: 

 

  

  

Fig. 6 Comparison of all optimization algorithms. 

6. What is the best Optimization Algorithm for Deep Learning? 

Finally, we can discuss the question of what the best gradient descent algorithm is. 

In general, a normal gradient descent algorithm is more than adequate for simpler tasks. If you 

are not satisfied with the accuracy of your model you can try out RMSprop or add a momentum 

term to your gradient descent algorithms. 
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But in my experience the best optimization algorithm for neural networks out there is Adam. 

This optimization algorithm works very well for almost any deep learning problem you will ever 

encounter. Especially if you set the hyperparameters to the following values: 

• β1=0.9 

• β2=0.999 

• Learning rate = 0.001–0.0001 
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… this would be a very good starting point for any problem and virtually every type of neural 

network architecture I’ve ever worked with. 

That’s why Adam Optimizer is my default optimization algorithm for every problem I want to 

solve. Only in very few cases do I switch to other optimization algorithms that I introduced 

earlier. 

In this sense, I recommend that you always start with the Adam Optimizer, regardless of the 

architecture of the neural network of the problem domain you are dealing with. 

 

 

 


